

Faculty of Science Department of Mathematics & Statistics

Quiz #4 - MATH 311 - L01 - T01/702.
Tuesday March 17, 2009

Your family name:	1277
Your first name:	
Your signature:	
Your student number	

INSTRUCTIONS:

- I. Fill out the above information BEFORE starting.
- II. Show all your work, use the back of the previous page for rough work and clearly insert your solution in the space provided space.
- III. Calculators are not allowed, and no other material.
- IV. There are 2 questions and 3 pages to this exam.
- V. Time allowed is 50 minutes.

		, .		, .		
MARKS	#1·	/4	#2	76 1	Total	/10 I
ATAL EL OL EGI.	11	_ / -	77-2.		L'Otta.	/ 10

Question 1 (4 points) Consider the following linear transformation $T: \mathbb{P}_2 \to \mathbb{P}_2$ given by

$$T(a + bx + cx^{2}) = a + (a - b)x + (a - b - c)x^{2}$$

[2] a) With justification, find ker(T).

Q+bx+(x2 e Ren(T) e) T(a+bx+(x2) = 0C) a+(a-b)x+(a-b-(x2) = 0C) a=0 a-b=0 a-b=0

(-) a= 5= c=0

Answer: $ker(T) = \frac{1}{2} \frac{1}{2} \frac{1}{2}$

Answer: $ker(T) = \frac{1}{2}$ [2] b) With justification, find im(T), and argue whether T is an isomorphism.

A condition of m(T), and argue whether T is an isomorphism.

A condition of m(T), and argue whether T is an isomorphism.

A condition of m(T), and argue whether T is an isomorphism.

A condition of m(T), and argue whether T is an isomorphism.

A condition of m(T), and argue whether T is an isomorphism.

A condition of m(T), and argue whether T is an isomorphism.

A condition of m(T), and argue whether T is an isomorphism.

A condition of m(T), and argue whether T is an isomorphism.

A condition of m(T), and argue whether T is an isomorphism.

A condition of m(T), and argue whether T is an isomorphism.

A condition of m(T) is an isomorphism.

Tis 1-1 since Kent = 713 Tis outo sine Tutz Pz

Answer: im(T) = Isomorphism: f

Question 2 (6 points) Consider the following linear transformation $T: \mathbb{P}_2 \to \mathbb{R}^2$ given by

$$T(1) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $T(x-1) = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, and $T(x^2 - x) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Since $B = \{1, x - 1, x^2 - x\}$ is a basis of \mathbb{P}_2 , the above does uniquely define a linear transformation.

[2] a) Compute T(1), T(x) and $T(x^2)$.

So $T(x) \ge T(x-1) + T(1) = T(1)$ So $T(x^2) \ge T(x^2-1) + T(1) = T(1)$ So $T(x^2) \ge T(x^2-1) + T(x^2-1) + T(1)$ $T(x^2) \ge T(x^2-1) + T(x^2-1) + T(1)$ $T(x^2) \ge T(x^2-1) + T(x^2-1) + T(1)$

Answer:
$$T(1) = \frac{\bigcap}{\bigcap} T(x) = \frac{\bigcap}{\bigcap} T(x^2) = \frac{\bigcap}{\bigcap}$$

[2] b) With justification, is T onto? $R^2 = 5 pon \{ \{ 0 \}, \{ 0 \} \} \subseteq TMT \subseteq R^2$ $R^2 = 5 pon \{ \{ 0 \}, \{ 0 \} \} \subseteq TMT \subseteq R^2$

Answer: $ker(T) = \frac{Span\{2(-2x-1)\}}{corany multiple} dim(ker(T)) = \frac{1}{2(-2x-1)}$

Faculty of Science Department of Mathematics & Statistics

Quiz #4 - MATH 311 - L01 - T03 Thursday March 19, 2009

SOLUTions

Your family name:	
Your first name:	
Your signature:	
Vour student number	

INSTRUCTIONS:

- I. Fill out the above information BEFORE starting.
- II. Show all your work, use the back of the previous page for rough work and clearly insert your solution in the space provided space.
- III. Calculators are not allowed, and no other material.
- IV. There are 2 questions and 3 pages to this exam.
- V. Time allowed is 50 minutes.

MARKS:	#1:	/4	#2:	/6	Total:	/10		

Consider the following linear transformation $T: \mathbb{P}_2 \to \mathbb{R}^2$ given Question 1 (4 points) by

$$T(a+bx+cx^2) = \left[\begin{array}{c} a-b \\ a-c \end{array} \right].$$

[2] a) With justification, find a basis for ker(T) and dim(ker(T)).

$$a+bx+cx^{2} \in kon(4) \iff T(a+bx+cx^{2})=0$$

$$C) \begin{cases} a-b7=[0] \\ a-c7=[0] \end{cases}$$

$$C) a-b=0 \text{ and } c-c=0$$

$$C) a=b=c$$

$$C) a=b=c$$

$$E \land a+bx+cx^{2}: a\in \mathbb{R}^{3}$$

$$= span \left\{1+x+x^{2}\right\}$$

Answer: Basis $\frac{\left\{1 + 2 + x^2\right\}}{1}$ Dimension ____

[2] b) With justification, find a basis for im(A) and dim(im(T)).

With justification, find a basis for
$$im(A)$$
 and $dim(im(T))$.

So $dim(FinT) = 2$

but $mT \subseteq \mathbb{R}^2$ and $dim(\mathbb{R}^2 = 2)$

Low $mT = \mathbb{R}^2$.

Answer: Basis () Dimension -

Question 2 (6 points) Consider the following linear transformation $T: \mathbb{P}_1 \to \mathbb{R}^2$ given by

$$T(p(x)) = \begin{bmatrix} p(0) \\ p(1) \end{bmatrix}.$$

[1] a) Compute T(1) and T(x).

Answer:
$$T(1) = \frac{1}{1}$$
 and $T(x) = \frac{1}{1}$

[2] b) With justification, show that T an isomorphism.

[1] c) Since T is an isomorphism, there must be a linear transformation $S: \mathbb{R}^2 \to \mathbb{P}_1$ such that $ST = 1_{\mathbb{P}_1}$ and $TS = 1_{\mathbb{R}^2}$. Find $S(\begin{bmatrix} 1 \\ 1 \end{bmatrix})$ and $S(\begin{bmatrix} 0 \\ 1 \end{bmatrix})$.

Since
$$ST=\Delta_{P_1}$$
 de $I=ST(i)=S[i]$
 $\chi=ST(x)=S[i]$

Answer
$$S(\begin{bmatrix} 1 \\ 1 \end{bmatrix}) = \underbrace{\qquad} S(\begin{bmatrix} 0 \\ 1 \end{bmatrix}) = \underbrace{\qquad} C$$

[2] c) With justification, find $S(\begin{bmatrix} a \\ b \end{bmatrix})$ for any $a, b \in \mathbb{R}$.