Figure 10.35
(a) The circular cone az® = x> +y
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Figure 10.34
(a) The circular cylinder
2 4yt =g?
(b) The parabolic cylinderz = %2

(a)

(b

(®)

T

Uit |



Figure 10.36
(a) The elliptic paraboloid
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(b) The hyperbolic paraboloid
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Figure 10.37

(a) The hyperboloid of one sheét
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(b) The hyperboloid of two sheets
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represents a surface called a hyperboloid of one sheet. (See Figure 10.37(a).) The
equation

represents a hyperboloid of two sheets. (See Figure 10.37(b).) Both surfaces
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Graphical Representations

The graph of a function f of one variable (i.e., the graph of the equationy = f(x))
is the set of points in the xy-plane having coordinates (x, f(x)), where x is in
the domain of f. Similarly, the graph of a function f of two variables (the graph
of the equation z = f(x,y)) is the set of points in 3-space having coordinates
(.1', y, f(x, y)), where (x, y) belongs to the domain of f. This graph is a surface
in B® lying above (if f(x,y) > 0) or below (if f(x,y) < 0) the domain of f in
the xy-plane. (See Figure 12.1.) The graph of a function of three variables is a
three-dimensional hypersuiface in 4-space, R*. In general, the graph of a function
of 1 variables is an n-dimensional surface in R**!. We will not attempt to draw
graphs of functions of more than two variables!
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graph
z=fx,y)

Figure 12.1 The graph of f(x, y) is .
the surface with equation z = f(x, y) ¢
defined for points (x, ) in the domain domain of f
of f x i
: BTl Consider the function |
% ;
fap=3(1-2-2), ©sxs2 0sys4-20.

The graph of f is the plane triangular surface with vertices at (2,0, 0), (0.4, 0).‘5
and (0, 0, 3). (See Figure 12.2.) If the domain of f had not been explicitly stal";
to be a particular set in the xy-plane, the graph would have been the whole plangi

through these three points. -

Figure 12.2
Consider f(x,y) = /9 —x2— y2. The expression under &
S

quare root cannot be negative, so the domain is the disk x2 + y* < 9 in_

z xy-plane.
I If we square the equation z = /9 — x? — y?, we can rewrite the result in
=y 9-c3-y? form x? + y2 + 22 = 9. This is a sphere of radius 3 centred at the origin. HOW¢

the graph of f is only the upper hemisphere where z = 0. (See Figure 12.3.)

Since it is necessary to project the surface z = f(x, y) onto a two-dimf:ﬂs}-
page, most such graphs are difficult to sketch without considerable artistic %g
Y and training. Nevertheless, you should always try to visualize such a grap
Figure 12.3 sketch it as best you can. Sometimes it is convenient to sketch only part of 2 =4




Eigure 12.4 The graph of
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for instance, the part lying in the first octant. It is also helpful to determine (and
sketch) the intersections of the graph with various planes, especially the coordinate
planes, and planes parallel to the coordinate planes. (See Figure 12.1.)

Some mathematical software packages will produce plots of three-dimensional
graphs to help you get a feeling for how the corresponding functions behave.
Figure 12.1 is an example of such a computer-drawn graph, as is Figure 12.4 below.
Along with most of the other mathematical graphics in this book, both were produced
using the mathematical graphics software package MG. Later in this section we
discuss how to use Maple to produce such graphs.
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Another way to represent the function f(x,y) graphically is to produce a two-
dimensional topographic map of the surface z = f(x,y). In the xy-plane we
sketch the curves f(x, y) = C for various values of the constant C. These curves
are called level curves of f because they are the vertical projections onto the xy-
plane of the curves in which the graph z = f(x, y) intersects the horizontal (level)
planes z = C. The graph and some level curves of the function f(x, y) = x4 y?
are shown in Figure 12.5. The graph is a circular paraboloid in 3-space; the level
curves are circles centred at the origin in the xy-plane.

S

level curves

) K.,

X * C=2.2 ¥ cNELSON /) tate S\
Figure 12.5 The graph of f(x, y) = x* + 2 Figure 12.6 Level curves (contours) representing
and some level curves of f elevation in a topographic map

The contour curves in the topographic map in Figure 12.6 show the elevations, in
100 m increments above sea level, on part of Nelson Island on the British Columbia
coast. Since these contours are drawn for equally spaced values of C, the spacing of
the contours themselves conveys information about the relative steepness at various
places on the mountains; the land is steepest where the contour lines are closest
together. Observe also that the streams shown cross the contours at right angles.
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| curves of x2 — y?

graph of x% — y2

2.9

/el curves of z = g(x, y) for
imple 6

zgraphof z = g(x, y)

(@ (b)

2 CUUH NN Describe and sketch some level curves of the function z = g(x, y)
defined by z = 0, x2 + (y — z)* = 2z%. Also sketch the graph of g.

Solution The level curve z = g(x, y) = C (where C is a positive constant) has
equation x2 4 (y — C)? = 2C? and is, therefore, a circle of radius +/2C centred
at (0, C). Level curves for C in increments of 0.1 from O to 1 are shown in
Figure 12.9(a). These level curves intersect rays from the origin at equal spacing
(the spacing is different for different rays) indicating that the surface z = g(x, y) is
an oblique circular cone. See Figure 12.9(b). i

(a) (®)

Although the graph of a function f(x, y, z) of three variables cannot easily be
drawn (it is a three-dimensional hypersurface in 4-space), such a function has
level surfaces in 3-space that can, perhaps, be drawn. These level surfaces have
equations f(x, y,z) = C for various choices of the constant C. For instance, the
level surfaces of the function f(x,y,z) = x2 + y2 + z? are concentric spheres
centred at the origin. Figure 12.10 shows a few level surfaces of the function
f(x,,2) = x? — z. They are parabolic cylinders.
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Figure 12.10 Level surfaces of
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Using Maple Graphics
Like many mathematical software packages, Maple has several plotting routines
to help you visualize the behaviour of functions of two and three variables. We
mention only a few of them here; there are many more. Most of the plotting routines
arc in the plots package, so you should begin any Maple session where you want to
use them with the input

> with({plots):

To save space, we won’t show any of the plot output here. You will need to play
with modifications to the various plot commands to obtain the Kind of output you
desire.

The graph of a function f(x, y) of two variables (or an expression in x and y)
can be plotted over a rectangle in the xy-plane with a call to the plot3d routine. For
example,
> £ := -6%y/(2+x"2+y " 2);
> plot3d(f, x=-6..6, y=-6..6);
will plot a surface similar to the one in Figure 12.4 but without axes and viewed

from a steeper angle. You can add many kinds of options to the command to change
the output. For instance,

> plot3d(f, x=-6..6, y=-6..6, axes=boxed,
orientation=[30,70]);

will plot the same surface within a 3-dimensional rectangular box with scales on
three of its edges indicating the coordinate values. (If we had said axes=normal
instead, we would have got the usual coordinate axes through the origin, but they
tend to be harder to see against the background of the surface, so axes=boxed
is usually preferable. The option orientation= [30,70] results in the plot’s
being viewed from the direction making angle 70° with the z-axis and lying in a
plane containing the z-axis making an angle 30° with the xz-plane. (The default
value of the orientation is [45,45] if the option is not specified.) By default,
the surface plotted by plot3d is ruled by two families of curves, representing its




intersection with vertical planes x = a and y = b for several equally spaced values
of a and b, and it is coloured opaquely so that hidden parts do not show.

Instead of plot3d, you can use contourplot3d to get a plot of the surface ruled
by contours on which the value of the function is constant. If you don’t get enough
contours by default, you can include a contours=n option to specify the number
you want.

> contourplot3d(f, x=-6..6, y=-6..6, axesg=boxed,
contours=24) ;

The contours are the projections of the level curves onto the graph of the surface.
Alternatively, you can get a two-dimensional plot of the level curves themselves
using contourplot ’

> contourplot (£, x=-6..6, y=-6..6, axes=normal,
contours=24) ;

Other options you may want to include with plot3d or contourplot3d are:

(a) view=zmin. .zmax to specify the range of values of the function (i.e., z) to
show in the plot.

(b) grid=[m,n] to specify the number of x and y values at which to evaluate
the function. If your plot doesn’t look smooth enough, try m = n = 20 or 30
or even higher values.

The graph of an equation, f(x, y) = 0, in the xy-plane can be generated without
solving the equation for x or y first, by using implicitplot.

> impliecitplot(x"3-y " 2-5*x*y=%x-5, x=-6..7, y=-5..6);
will produce the graph of x* — y?> — 5xy —x — 5 = O on the rectangle —6 < x <7,
—5 < y < 6. There is also an implicitplot3d routine to plot the surface in 3-space

having an equation of the form f(x, y, z) = 0. For this routine you must specify
ranges for all three variables;

> implicitplot3d(x"2+y"2-272-1, x=-4..4, y=-4. .4,
z=-3..3, axes=boxed) ;

plots the hyperboloid z? = x? + y? — 1.

Finally, we observe that Maple is no more capable than we are of drawing graphs
of functions of three or more variables, since it doesn’t have four-dimensional plot
capability. The best we can do is plot a set of level surfaces for such a function:

> implicitplot3d({z-x"2-2,2-X"2,2-x"2+42},x=-2..2,
y=-2..2, z=-2..5, axes=boxed) ;

It is possible to construct a sequence of plot structures and assign them to, say, the

elements of a list variable, without actually plotting them. Then all the plots can be

plotted simultaneously using the display function.

> for ¢ from -1 to 1 do
ple]l := implicitplot3d{z"2-x"2-y " 2-2%e, x=-3..3,
y=-3..3, 2=0..2,
color=COLOR(RGRE, (1+c) /2, (1-c)/2,1)) od:

> display([seql(plec],c=-1..1)], axes=boxed,
orientation=[30,40]); '

66,97

Note that the command creating the plots is terminated with a colon “:” rather than
the usual semicolon. If you don’t suppress the output in this way, you will get
vast amounts of meaningless numerical output as the plots are constructed. The

color=. .. option is an attempt to give the three plots a different colour so they
can be distinguished from each other. :




m The function f(x,y) = x? 4 y? (see Figure 13.1) has a critical
point at (0, 0) since Vf = 2xi+ 2yj and both components of Vf vanish at (0, 0).

Since

flx,y)>0=f(0,0) if (x,y) # 0,0,

f must have (absolute) minimum value 0 at that point. If the domain of f is not
restricted, f has no maximum value. Similarly, g(x, y) =1 — x?— y* has (absolute)
maximum value 1 at its critical point (0, 0). (See Figure 13.2.)
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S CEN The function A(x, y) = y? —x* alsohas a critical point at (0, 0)
but has neither a local maximum nor a local minimum value at that point. Observe
that k(0, 0) = 0 but h(x, 0) < 0and k(0,y) > 0 for all nonzero values of x and y.
(See Figure 13.3.) The graphof his a hyperbolic paraboloid. In view of its shape

we call the critical point (0, 0) a saddle point of h.
_®|

In general, we will somewhat loosely call any interior critical point of the domain
of a function f of several variables a saddle point if f does not have a local
maximum or minimum value there. Even for functions of two variables, the graph
will not always look like a saddle near a saddle point. For instance, the function
flx,y) = —x? has a whole line of saddle points along the y-axis (see Figure 13.4),
although its graph does not resemble a saddle anywhere. These points resemble
inflection points of a function of one variable. Saddle points are higher—dimensional
analogues of such horizontal inflection points.

The function f(x, y) = y/**+ y? hasno critical points but does
have a singular point at (0, 0) where it has a local (and absolute) minimum value,
zero. The graph of f isa circular cone. (See Figure 13.5(a).)

‘fHgure13.4 A line of saddle points
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2 (-1,0,2)

Figure 13.5
(a) /x2 + y? has a minimum value
at the singular point (0, 0)
(b) When restricted to the disk
x2 4 y2 < 1, the function 1 —x
has maximum and minimum
values at boundary points (a) (b)




