FINAL HANDOUT
 MATH 349 .

1. Find the interval of convergence for $\sum_{n=1}^{\infty} \frac{(3 x-1)^{n}}{3^{3 n} \sqrt{n}}$.
2. Find the Taylor series of $f(x)=x e^{x}$ around the centre $c=-1$.

For which x is the represenation valid?
3. For the curve c given as the intersection of two surfaces
$c=\left\{z=x^{2}+y^{2}\right\} \cap\{6 x-2 y-z=1\}$
(a) find a parametrization;
(b) find an equation of the tangent line at $P(0,-1,1)$;
(c) set up the integral for evaluating arclength between the points P and $R(3,2,13)$.Do not evaluate.
4. Find an equation of the tangent plane to the surface
$z=x^{y x^{2}}$ at the point $x=1, y=-1$.
5 . For the function f defined as follows
$f(x, y)=\frac{x^{2}}{x^{2}+3 y^{2}}$ for $(x, y) \neq(0,0)$ and $f(0,0)=0$
(a) find the gradient ∇f at the origin;
(b) is f continuous at the origin? Explain.
6. Find the domain of definition,range and level curves $(c=0,1,-1)$ for $z=\ln \frac{x}{y}$.
7. Find the directional derivative of $f(x, y, z)=e^{-y}\left(x^{2}+\cos z\right)$ at the point $A(2,0, \pi)$ in the direction towards the point $B(-1,-1,0)$.
8. Given $f(2,-1)=11, f_{x}(2,-1)=-7, f_{y}(2,-1)=5, f(2,-2)=9$, $f_{x}(2,-2)=3, f_{y}(2,-2)=-2$ and $\mathbf{g}(u, v)=\left(u v^{2}, \frac{u}{v}\right)$
find $\frac{\partial F}{\partial u}$ at the point $(2,-1)$ if $F=f \circ \mathbf{g}$
i.e. $F(u, v)=f(x, y)$ where $x=u v^{2}, y=\frac{u}{v}$.
9. The temperature T at points (x, y) of the $x y-$ plane is given by $T(x, y)=y^{2}-3 x^{2}$
(a) Draw (find) the isotherms (level curves) $T=0,3,-6$.
(b) In what direction should an ant siting at $(-1,2)$ move to cool off as quickly as possible?
10. Show that the systems of equations

$$
\begin{aligned}
& x y^{2}-z+u^{2}=3 \\
& x^{3} z+2 y-u=0 \\
& x u+y-x y z=3
\end{aligned}
$$

can be solved for x, y, z as functions of u around the point $(x, y, z, u)=(1,1,-1,1)$.
11. Find the Taylor polynomial $T_{2}(x, y)$ for the function $f(x, y)=\ln (y \cos x)$ around the center (0,1) .
12. Show that the equation $\arcsin (z y)+z^{3} x+x^{2} y+8=0$ can be solved for z as a function of x, y around he point $P(-1,0,2)$ then find $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$ at that point..

