MATH 349
Handout # 2-Solutions.
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because it is reciprocal of a positive,continous and increasing(product of 2 incr. funct-s)
1
function.Now / _ —— ,using substitution u = Inz, du = 1dx,
(Inx)? In T
o 1 1 1 1 1
then / ———dr = — lim — + — = 0 + — = ——_.Therefore the series is
2 z(lnx)? z—=colnz  In2 In2  In2
convergent.
In b) Z 7(1 ] In this case the integral is difficult ; try Comparison test:
n=2 (IN7T
1

§lnn:1n\/ﬁ<\/ﬁfor any n > 2,
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so the given series is divergent.
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Since 0 < cos?n < 1,0 <
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By Limit Comparison Test ) a, is convergent
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and by Comparison Test the original series is convergent.
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6. Find the sum of Z —
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Tthe series is a geometric one where r = ﬁ < 1 so the series is convergent
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using Y r" = for any —1 <r < 1.
n=N 1—r

oo

2
7. the series Z +cosm
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Also 2-y/n<yn+n<2n
1 <2+cosn< 3
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and Comparison test.Since Z — is divergent
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has positive terms and 1 < 2+ cosn < 3

SO and we can use the left part of the inequality

(a half of the harmonic series) and our series is bigger it is also divergent.
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8. the series Z has positive terms so we can try Ratio or Root test
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as n — oo . Since the limit p = 0 < 1 the series is convergent.

Root test is easier
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(an)™ = ( )u = - — — =0asn — oosince lim nn» =1

Since the limit 0 = 0 < 1 the series is convergent.
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Find the sum of Z Fr2

We can split the series into two convergent ones:
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nZ::1 Sz nZ::1 2 —i—nZ::l s = Z 5n Z — both are convergent geometric
series with r = % and r = % so the original series is covergent and the sum
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using > r" = for any —1 < r < 1.
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the series Z —— has positive terms for n > 2
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the function f(z) = —— is positive and continous on [2,00) , and f'(z) = +——— =
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so the function is decreasing on [3, 00) and we can use Integral test :
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the series Z ( >) has positive terms so we can try Ratio test:
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as n — oo (divide the top and bottom by n?). Since the limit p = 7 < 1

the series is convergent.



