The University of Calgary
 Department of Mathematics and Statistics
 MATH 349
 Handout \# 3

1. Is the series $\sum_{n=3}^{\infty} \frac{(-1)^{n}}{n(\ln n)}$
(a) absolutely convergent or divergent? Explain.
(b) conditionally convergent of divergent?Explain.
2. Is the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\ln (n+1)}$
(a) absolutely convergent or divergent? Explain.
(b) conditionally convergent of divergent?Explain.
3. Is the series $\sum_{n=2}^{\infty}(-1)^{n}\left(\frac{1}{n}-\frac{1}{n!}\right)$
(a) absolutely convergent or divergent? Explain.
(b) conditionally convergent of divergent?
4. Find the centre,radius and interval of convergence of power series
(a) $\sum_{n=1}^{\infty} \frac{n!}{4^{n}}(x+1)^{n}$
(b) $\sum_{n=1}^{\infty} \frac{n!}{(2 n)!}(2 x-1)^{n}$
5. Express $f(x)=\frac{1}{(x+1)^{2}}$ in powers of $(x-1)$

On what interval is the representation valid?
6. Find the centre,radius and interval of convergence of power series
(a) $\sum_{n=1}^{\infty} \frac{(4 x-1)^{n}}{n^{n}}$
(b) $\sum_{n=1}^{\infty} \frac{n}{2^{n}}(4-x)^{n}$
7. Express $f(x)=\ln (2-x)$ in powers of $(x+1)$.

On what interval is the representation valid?
8. Expand $g(x)=\frac{1}{1-2 x}$ in powers of $(x+4)$,
find the formula for nth term, and find the interval where the expansion is valid.

