MATH 349 Handout #4

 \mathbf{A}

1. For $f(x,y) = \sqrt{2x + y^2}$ (a) sketch the domain;

(b)sketch the level curves for c = 0, -1, 2;

(c) show that $y f_x = f_y$ in the domain (f_x, f_y) are partial derivatives).

2. Find $\lim_{(x,y)\to(0,0)} \frac{x^3}{x^2+2y^2}$, if it exists.

 \mathbf{B}

3. For $f(x,y) = \frac{e^y}{x}$

(a) sketch the domain and level curves for $c = 0, \pm 1, e$ in the xy-plane

(b) find the second mixed partial derivative f_{xy} .

4. Show that $f(x,y) = \frac{1}{\sqrt{yx^2 + y^2 + \frac{1}{4}x^4}}$ satisfies the equation

 $f_x = x f_y$ in the domain - find it!

 \mathbf{C}

5. For $f(x,y) = \ln(x^2 + y^2 + x)$ (a) sketch the domain of f;

(b) sketch the level curves of f for $c = 0, 1, \ln 2, -\ln 2, \dots$

6. Find $\lim \frac{xy+y}{(x+1)^2+y^2}$ as $(x,y) \to (-1,0)$ if it exists.

7. For $f(x,y) = \arctan \frac{x}{y}$ show that $y \cdot f_x - x \cdot f_y = 1$ for any x and $y \neq 0$.

(f_x and f_y denote partial derivatives with respect to x and y respectively)

D

8. For $f(x,y) = \frac{2x}{x^2 + y}$ (a) sketch the domain of f;

(b) sketch to the xy-plane the level curves for c = 0, -2, 1;

(c) find an equation of the tangent plane to z = f(x, y) at x = -1, y = 1.

9. Find $\lim_{(x,y)\to(0,1)} \frac{xy-x}{3x^2+2(y-1)^4}$, if it exists.