MATH 349
Handout \#5 Solution

For 1)

$f(x, y)=\sqrt{2 x+y^{2}}$
for the domain $2 x+y^{2} \geq 0 \quad y^{2} \geq-2 x \quad$ any $x>0$ will do, generally the region right of the parabola $y^{2}=-2 x, x \leq 0$ level curves: $c=0 \quad 0=2 x+y^{2} \ldots$ parabola above;
$c<0 \ldots$ NO curves; $c>0 \ldots$ parabolas shifted to the right $y^{2}=c^{2}-2 x\left(y= \pm \sqrt{c^{2}-2 x}\right)$
Partials:
$f_{x}=\frac{2}{2 \sqrt{2 x+y^{2}}}=\frac{1}{\sqrt{2 x+y^{2}}} ; f_{y}=\frac{2 y}{2 \sqrt{2 x+y^{2}}}=\frac{y}{\sqrt{2 x+y^{2}}}$
obviously $\quad y f_{x}=f_{y}$ in the domain except on $y^{2}=-2 x$.
For 2)
For $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}}{x^{2}+2 y^{2}}$
define $g(x, y)=\frac{x^{3}}{x^{2}+2 y^{2}}$ then $g(0, y)=0$ for $y \neq 0$ and for $x \neq 0$
$g(x, 0)=\frac{x^{3}}{x^{2}}=x \rightarrow 0$ as $x \rightarrow 0$; along any line $y=m x$ for $x \neq 0$
$g(x, m x)=\frac{x^{3}}{x^{2}+2 m^{2} x^{2}}=\frac{x}{1+2 m^{2}} \rightarrow 0$ as $x \rightarrow 0$.
Thus limit could be 0 . Now, we have to prove it
$|g(x, y)-0|=\left|\frac{x^{3}}{x^{2}+2 y^{2}}\right|=|x| \frac{x^{2}}{x^{2}+2 y^{2}} \leq|x| \frac{x^{2}+2 y^{2}}{x^{2}+2 y^{2}}=|x| \rightarrow 0$
as $x \rightarrow 0$ therefore $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}}{x^{2}+2 y^{2}}=0$ by Squeeze Theorem.

For 3)

For $f(x, y)=\frac{e^{y}}{x}$ the domain is $x \neq 0$,so $D=\mathbf{R}^{2}-\{y-$ axis $\}$
level curves: $c=0, \mathrm{NO}$ curve since $e^{y}>0$ always
for $c \neq 0 \quad c x=e^{y}, \ln c x=y$,for $c x>0$, and $y=\ln |x|+\ln |c|$
so for $c=1, y=\ln x, x>0$; for $c=-1, y=\ln (-x), x<0$,
and for $c=e, y=\ln x+1, x>0$
For the derivative $f_{x}=-\frac{e^{y}}{x^{2}}$, and $\left(f_{x}\right)_{y}=-\frac{e^{y}}{x^{2}}=f_{x y}$
since all functions are continuous in $D \quad f_{x y}=f_{y x}$.
For 4)
for $f(x, y)=\left(y x^{2}+y^{2}+\frac{1}{4} x^{4}\right)^{-\frac{1}{2}}$
using Chain Rule $f_{x}=-\frac{1}{2}\left(y x^{2}+y^{2}+\frac{1}{4} x^{4}\right)^{-\frac{3}{2}} \cdot\left(2 x y+x^{3}\right)$ and
$f_{y}=-\frac{1}{2}\left(y x^{2}+y^{2}+\frac{1}{4} x^{4}\right)^{-\frac{3}{2}} \cdot\left(x^{2}+2 y\right)$,so $\quad x f_{y}=f_{x}$.
For the domain: $y x^{2}+y^{2}+\frac{1}{4} x^{4}>0,\left(y+\frac{1}{2} x^{2}\right)^{2}>0$,
always except when $y=-\frac{1}{2} x^{2}$
Also we can simplified $f(x, y)=\left|y+\frac{1}{2} x^{2}\right|^{-1}$,so $f_{x}=\frac{-x}{\left(y+\frac{1}{2} x^{2}\right)^{2}} \operatorname{sgn}\left(y+\frac{1}{2} x^{2}\right)$

(5)

(3)

(8)

and

$$
f_{y}=\frac{-1}{\left(y+\frac{1}{2} x^{2}\right)^{2}} \operatorname{sgn}\left(y+\frac{1}{2} x^{2}\right), \text { if } y+\frac{1}{2} x^{2} \neq 0
$$

For 5)

For $f(x, y)=\ln \left(x^{2}+y^{2}+x\right)$
for domain solve : $x^{2}+y^{2}+x>0$ complete the square: $\left(x+\frac{1}{2}\right)^{2}+y^{2}>\frac{1}{4}$
so the domain is outside the circle with the centre at $\left(-\frac{1}{2}, 0\right)$ and $r=\frac{1}{2}$.
For the level curves: $e^{c}=x^{2}+y^{2}+x$ so as above :
$\left(x+\frac{1}{2}\right)^{2}+y^{2}=e^{c}+\frac{1}{4}$
so all are circles with the same centre $\left(-\frac{1}{2}, 0\right)$ and $r=\sqrt{e^{c}+\frac{1}{4}}$,
particularly if $c=0 \quad r=\frac{\sqrt{5}}{2} ; c=\ln 2 \quad r=\frac{3}{2}$;
$c=-\ln 2=\ln \frac{1}{2} \quad r=\frac{\sqrt{3}}{2} \ldots$
Notice that cross-section $x=0 \quad z=2 \ln |y|$
so we can sketch the graph of f :

For 6)

define $g(x, y)=\frac{x y+y}{(x+1)^{2}+y^{2}}=\frac{(x+1) y}{(x+1)^{2}+y^{2}}$ for $(x, y) \neq(-1,0)$
then $g(-1, y)=\frac{0}{y^{2}}=0$ for $y \neq 0$ and $g(x, 0)=0$ for $x \neq-1$
but for the line $y=x+1$ passing through the point $(-1,0)$
$g(x, x+1)=\frac{(x+1)^{2}}{2(x+1)^{2}}=\frac{1}{2}$ for $x \neq-1$ so the limit DNE.

For 7)

$f(x, y)=\arctan \frac{x}{y}$ for $y \neq 0$
$f_{x}=\frac{1}{1+\left(\frac{x}{y}\right)^{2}} \cdot \frac{1}{y}=\frac{y}{x^{2}+y^{2}}$ and $f_{y}=\frac{1}{1+\left(\frac{x}{y}\right)^{2}} \cdot \frac{-x}{y^{2}}=\frac{-x}{x^{2}+y^{2}}$
so $\quad y f_{x}-x f_{y}=\frac{y^{2}+x^{2}}{x^{2}+y^{2}}=1$ for any x and $y \neq 0$.
For 8)
For $f(x, y)=\frac{2 x}{x^{2}+y}$ the domain is
$D=\left\{y \neq-x^{2}\right\} \ldots x y-$ plane except the parabola $y=-x^{2}$
level curves $c=0 \Longrightarrow 2 x=0, x=0 \ldots y$-axis except the origin
for $c=1: \quad 1=\frac{2 x}{x^{2}+y}, \quad x^{2}+y=2 x, \quad y=-x^{2}+2 x=-x(x-2)$
a parabola open down, vertex $V(1,1)$ without the origin
for $c=-2: \quad-2=\frac{2 x}{x^{2}+y}, \quad-2 x^{2}-2 y=2 x, \quad y=-x(1+x)$
a parabola open down, vertex at $V\left(-\frac{1}{2}, \frac{1}{4}\right)$, without the origin
general level curves are shifted parabolas open down without the origin, passing through the origin now,partials
$f_{x}(x, y)=2 \cdot \frac{x^{2}+y-2 x^{2}}{\left(x^{2}+y\right)^{2}}=\frac{2\left(y-x^{2}\right)}{\left(x^{2}+y\right)^{2}}$ at $x=-1, y=1 \quad f_{x}(-1,1)=0$
$f_{y}(x, y)=2 x \cdot(-1)\left(x^{2}+y\right)^{-2} \cdot 1=\frac{-2 x}{\left(x^{2}+y\right)^{2}}$ at $x=-1, y=1 \quad f_{y}(-1,1)=\frac{2}{4}=\frac{1}{2}$
so a normal vector to the tangent plane is $\left(f_{x}, f_{y},-1\right)=\left(0, \frac{1}{2},-1\right)$
or $\vec{n}=(0,1,-2)$ an equation is $\quad y-2 z=d$
for d we need the point $z_{0}=f(-1,1)=\frac{-2}{2}=-1 \quad P(-1,-1,-1)$ and $1+2=3=d$,so together $\quad y-2 z=3$.
For 9)
define $g(x, y)=\frac{x y-x}{3 x^{2}+2(y-1)^{4}}$ for $(x, y) \neq(0,1)$
then for $y \neq 1 \quad g(0, y)=0$ and for $x \neq 0 \quad g(x, 1)=0$,
try a line through that point $y=m x+1$
for $x \neq 0 \quad f(x, m x+1)=\frac{m x^{2}}{3 x^{2}+2 m^{4} x^{4}}=\frac{m}{3+2 m^{4} x^{2}} \rightarrow \frac{m}{3} \neq 0$
for any $m \neq 0 \quad($ as $x \rightarrow 0) \quad$ Therefore the limit DNE.

