The University of Calgary
 Department of Mathematics and Statistics
 MATH 349 Handout \# 5

1. For $f(x, y)=\frac{x y}{\sqrt{1+x^{2}}}$ and $\mathbf{g}: R^{2} \rightarrow R^{2}, \mathbf{g}(s, t)=\left(\cos (\pi s t), \sin \frac{\pi s}{t}\right)$
(a) find ∇f;
(b) using Chain Rule find $\nabla h(0,-1)$ where $h=f \circ \mathbf{g}$ $\left(\right.$ or $h(s, t)=f(x, y)$ where $x=\cos (\pi s t)$ and $\left.y=\sin \frac{\pi s}{t}\right)$
2. Find an equation of the tangent plane to $z=f(x, y)=\ln \left(x+y^{2}\right)$ at the point $x_{0}=0, y_{0}=-1$.
3. For the function $f(x, y)=e^{\sqrt{\frac{y}{x}}}$ find the domain and $f_{x x}$ and $f_{x y}$.
4. For $f(x, y, z)=\sqrt{2} \sin (\pi x y+x \ln z)$ and $\mathbf{g}: R \rightarrow R^{3}, \mathbf{g}(t)=\left(\frac{1}{t},-\frac{1}{t}, \frac{t}{2}\right)$
(a) find ∇f;
(b) find $D \mathbf{g}$ or \mathbf{g}^{\prime}
(c) using Chain Rule find $h^{\prime}(2)$ where $h=f \circ \mathbf{g}$
(or $h(t)=f(x, y, z)$ where $x=\frac{1}{t}, y=\frac{-1}{t}$ and $z=\frac{t}{2}$)
5. In what directions at the point $P(2,1)$ does the function $f(x, y)=\ln \left(\frac{x}{y}+\frac{y}{x}\right)$ have the rate of change equal to $\frac{3}{10}$? What is the maximum rate of change at that point?
6. Find the rate and the direction of the most rapid decrease of $f(x, y, z)=x^{2} z e^{y}+x z^{2}$ at the point $P(1, \ln 2,2)$.
7. Given $f(x, y)=\left\{\begin{array}{c}\frac{x y}{2 x^{2}+y^{2}} \text { for }(x, y) \neq(0,0) \\ 0 \ldots \ldots \ldots \text { at }(0,0)\end{array}\right.$
(a) Is f continous at $(0,0)$?
(b) Find ∇f at $(0,0)$, if it exists.
(c) Find the directional derivative at $(0,0)$ in the direction of $y=x$ if it exists.
(d) Find the directional derivative at $(-1,-1)$ where $\mathbf{u}=\frac{1}{\sqrt{2}}(1,1)$.
