The University of Calgary Department of Mathematics and Statistics MATH 349 Handout # 5

1. For
$$f(x,y) = \frac{xy}{\sqrt{1+x^2}}$$
 and $\mathbf{g}: \mathbb{R}^2 \to \mathbb{R}^2, \mathbf{g}(s,t) = (\cos(\pi st), \sin\frac{\pi s}{t})$

- (a) find ∇f ;
- (b) using Chain Rule find $\nabla h(0, -1)$ where $h = f \circ \mathbf{g}$ (or h(s, t) = f(x, y) where $x = \cos(\pi st)$ and $y = \sin\frac{\pi s}{t}$)
- 2. Find an equation of the tangent plane to $z = f(x, y) = \ln (x + y^2)$ at the point $x_0 = 0, y_0 = -1$.
- 3. For the function $f(x,y) = e^{\sqrt{\frac{y}{x}}}$ find the domain and f_{xx} and f_{xy} .
- 4. For $f(x, y, z) = \sqrt{2} \sin(\pi x y + x \ln z)$ and $\mathbf{g} : \mathbb{R} \to \mathbb{R}^3, \mathbf{g}(t) = (\frac{1}{t}, -\frac{1}{t}, \frac{t}{2})$
 - (a) find ∇f ;
 - (b) find $D\mathbf{g}$ or \mathbf{g}'
 - (c) using Chain Rule find h'(2) where $h = f \circ \mathbf{g}$ (or h(t) = f(x, y, z) where $x = \frac{1}{t}$, $y = \frac{-1}{t}$ and $z = \frac{t}{2}$)
- 5. In what directions at the point P(2,1) does the function $f(x,y) = \ln\left(\frac{x}{y} + \frac{y}{x}\right)$ have the rate of change equal to $\frac{3}{10}$? What is the maximum rate of change at that point?
- 6. Find the rate and the direction of the most rapid decrease of $f(x, y, z) = x^2 z e^y + x z^2$ at the point $P(1, \ln 2, 2)$.

7. Given
$$f(x,y) = \begin{cases} \frac{xy}{2x^2 + y^2} \text{for } (x,y) \neq (0,0) \\ 0 \dots \text{ at } (0,0) \end{cases}$$

- (a) Is f continous at (0,0)?
- (b) Find ∇f at (0,0), if it exists.
- (c) Find the directional derivative at (0,0) in the direction of y = x if it exists.
- (d) Find the directional derivative at (-1, -1) where $\mathbf{u} = \frac{1}{\sqrt{2}}(1, 1)$.