The University of Calgary
 Department of Mathematics and Statistics
 MATH 349 Handout \# 5

Solutions

For 1 a)
For $f(x, y)=\frac{x y}{\sqrt{1+x^{2}}} \quad f_{y}=\frac{x}{\sqrt{1+x^{2}}}$ and
$f_{x}=y \cdot \frac{\sqrt{1+x^{2}}-x \frac{2 x}{2 \sqrt{1+x^{2}}}}{\left(1+x^{2}\right)}=y \frac{\left(1+x^{2}\right)-x^{2}}{\sqrt{1+x^{2}}\left(1+x^{2}\right)}=\frac{y}{\left(1+x^{2}\right)^{\frac{3}{2}}}$

For 1b)

for $x=\cos (\pi s t) \quad y=\sin \frac{\pi s}{t} \quad \frac{\partial x}{\partial s}=-\sin (\pi s t) \cdot \pi t \quad \frac{\partial y}{\partial s}=\cos \frac{\pi s}{t} \cdot \frac{\pi}{t}$
and

$$
\frac{\partial x}{\partial s}(0,-1)=0 \quad \frac{\partial y}{\partial s}(0,-1)=-\pi
$$

for $s=0$ and $t=-1 \quad x=\cos (0)=1, y=\sin 0=0$
and $\nabla f(1,0)=\left(0, \frac{1}{\sqrt{2}}\right)$
$\frac{\partial}{\partial s} h(0,-1)=f_{x} \frac{\partial x}{\partial s}+f_{y} \frac{\partial y}{\partial s}=\nabla f(1,0) \bullet\left(\frac{\partial x}{\partial s}(0,-1), \frac{\partial y}{\partial s}(0,-1)\right)=$
$=\left(0, \frac{1}{\sqrt{2}}\right) \bullet(0,-\pi)=\frac{-\pi}{\sqrt{2}}$
$\frac{\partial x}{\partial t}=-\sin (\pi s t) \cdot \pi s \quad \frac{\partial y}{\partial t}=\cos \frac{\pi s}{t} \cdot \frac{-\pi s}{t^{2}}$
and $\frac{\partial x}{\partial t}(0,-1)=0 \quad \frac{\partial y}{\partial t}(0,-1)=0$
$\frac{\partial}{\partial t} h(0,-1)=f_{x} \frac{\partial x}{\partial t}+f_{y} \frac{\partial y}{\partial t}=\left(0, \frac{1}{\sqrt{2}}\right) \bullet(0,0)=0$
OR by Chain Rule $\quad D h=D f D \mathbf{g} \quad$ matrix multiplication where
$\mathbf{D g}=\left[\begin{array}{ll}\frac{\partial x}{\partial s} & \frac{\partial x}{\partial t} \\ \frac{\partial y}{\partial s} & \frac{\partial y}{\partial t}\end{array}\right]$ at $s=0, t=-1 \quad \mathbf{D g}(0,-1)=\left[\begin{array}{ll}0 & 0 \\ -\pi & 0\end{array}\right]$
so $D h=\nabla h=\left[\begin{array}{ll}0 & \frac{1}{\sqrt{2}}\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ -\pi & 0\end{array}\right]=\left[\begin{array}{ll}\frac{-\pi}{\sqrt{2}} & 0\end{array}\right]$
For 2)
for $f(x, y)=\ln \left(x+y^{2}\right)$ and $x_{0}=0, y_{0}=-1 \quad z_{0}=f(0,-1)=\ln 1=0$
partials $f_{x}=\frac{1}{x+y^{2}} \quad f_{y}=\frac{2 y}{x+y^{2}} \quad$ and $A=f_{x}(0,-1)=1, B=f_{y}(0,-1)=-2$
so tangent plane $\quad z=z_{0}+A\left(x-x_{0}\right)+B\left(y-y_{0}\right) \quad z=0+(x-0)-2(y+1)=$ $x-2 y-2$

Or the point on the graph is $P(0,-1,0)$ and $\mathbf{n}=(\nabla f,-1)=(1,-2,-1)$
so $x-2 y-z=d$ and from $P \quad 0+2-0=d$ thus $x-2 y-z=2$.
For 3)
for $f(x, y)=e^{\sqrt{\frac{y}{x}}}$ the domain is $\frac{y}{x} \geq 0$ i.e. $\{y \geq 0, x>0\} \cup\{y \leq 0, x<0\}$
$\left(-\frac{\sqrt{y}}{2} x^{-\frac{3}{2}}\right)=-\frac{1}{2 x} \sqrt{\frac{y}{x}} e^{\sqrt{\frac{y}{x}}}$
$f_{x x}=e^{\sqrt{\frac{y}{x}}}\left[\left(-\frac{\sqrt{y}}{2} x^{-\frac{3}{2}}\right)^{2}+\frac{3}{4} \sqrt{y} x^{-\frac{5}{2}}\right]=e^{\sqrt{\frac{y}{x}}}\left[\frac{y}{4 x^{3}}+\frac{3}{4 x^{2}} \sqrt{\frac{y}{x}}\right]$
$f_{x y}=-\frac{1}{2} x^{-\frac{3}{2}} e^{\sqrt{\frac{y}{x}}}\left[\frac{1}{2 \sqrt{y}}+\frac{\sqrt{y}}{2 \sqrt{y} \sqrt{x}}\right]=-\frac{1}{4} e^{\sqrt{\frac{y}{x}}} \cdot\left(\frac{1}{x \sqrt{y x}}+\frac{1}{x^{2}}\right), y \neq 0$
the middle steps are true only if both x, y are positive but the final expresions are valid even if both are negative.

OR $f_{x}=e^{\sqrt{\frac{y}{x}}} \cdot \frac{1}{2} \sqrt{\frac{x}{y}} \cdot \frac{-y}{x^{2}}$ by Chain Rule
For 4a)
$\nabla f=\operatorname{grad} f=\left(f_{x}, f_{y}, f_{z}\right)$ where
$f_{x}=\sqrt{2} \cos (\pi x y+x \ln z)[\pi y+\ln z] \quad f_{y}=\sqrt{2} \cos (\pi x y+x \ln z)[\pi x]$
$f_{z}=\sqrt{2} \cos (\pi x y+x \ln z)\left[\frac{x}{z}\right]$
For 4b)
$\mathbf{g}^{\prime}(t)=\left(g_{1}^{\prime}(t), g_{2}^{\prime}(t), g_{3}^{\prime}(t)\right)=\left(-\frac{1}{t^{2}}, \frac{1}{t^{2}}, \frac{1}{2}\right)$ for $t \neq 0$
OR
$D \mathbf{g}=\left[\begin{array}{l}g_{1}^{\prime} \\ g_{2}^{\prime} \\ g_{3}^{\prime}\end{array}\right]=\left[\begin{array}{l}-\frac{1}{t^{2}} \\ \frac{1}{t^{2}} \\ \frac{1}{2}\end{array}\right]$, where $g_{1}(t)=\frac{1}{t}, g_{2}(t)=-\frac{1}{t}$, and $g_{3}(t)=\frac{t}{2}$

For 4c)

if $t=2$ then $x=\frac{1}{2}, y=\frac{-1}{2}$ and $z=1 \quad \sqrt{2} \cos (\pi x y+x \ln z)=\sqrt{2} \cos \frac{-\pi}{4}=1$
and by Chain Rule $\quad D h=D f D \mathbf{g}$
$D f=\left[\begin{array}{lll}f_{x} & f_{y} & f_{z}\end{array}\right]=\left[\begin{array}{ccc}-\frac{\pi}{2} & \frac{\pi}{2} & \frac{1}{2}\end{array}\right]$ at $\left(\frac{1}{2},-\frac{1}{2}, 1\right)$ and $\mathbf{g}^{\prime}(2)=\left(\frac{-1}{4}, \frac{1}{4}, \frac{1}{2}\right)$
$h^{\prime}(2)=D f\left(\frac{1}{2},-\frac{1}{2}, 1\right) \mathbf{D g}(2)=\left[\begin{array}{lll}-\frac{\pi}{2} & \frac{\pi}{2} & \frac{1}{2}\end{array}\right]\left[\begin{array}{c}\frac{-1}{4} \\ \frac{1}{4} \\ \frac{1}{2}\end{array}\right]=\frac{\pi}{8}+\frac{\pi}{8}+\frac{1}{4}=\frac{\pi+1}{4}$.
OR $h^{\prime}(2)=f_{x} x^{\prime}+f_{y} y^{\prime}+f_{z} z^{\prime}=\nabla f\left(\frac{1}{2},-\frac{1}{2}, 1\right) \bullet\left(g_{1}^{\prime}(2), g_{2}^{\prime}(2), g_{3}^{\prime}(2)\right)=$ $=\left(-\frac{\pi}{2}, \quad \frac{\pi}{2}, \frac{1}{2}\right) \bullet\left(\frac{-1}{4}, \frac{1}{4}, \frac{1}{2}\right)=\frac{\pi+1}{4}$

For 5)

Simplify the function first $\quad f(x, y)=\ln \frac{x^{2}+y^{2}}{x y}=\ln \left(x^{2}+y^{2}\right)-\ln x-\ln y$
for $x>0, y>0$ so
partials are $f_{x}=\frac{2 x}{x^{2}+y^{2}} \quad-\frac{1}{x} \quad f_{y}=\frac{2 y}{x^{2}+y^{2}}-\frac{1}{y}$
and $f_{x}(2,1)=\frac{4}{5}-\frac{1}{2}=\frac{3}{10} \quad f_{y}(2,1)=\frac{2}{5}-1=\frac{-3}{5}$
Now, rate of change means the directional derivative
Since partials are continuous in the domain
$D_{\nu} f(2,1)=\nabla f(2,1) \bullet\left(\nu_{1}, \nu_{2}\right)=\frac{3}{10}$, where $\nu_{1}^{2}+\nu_{2}^{2}=1$,
so $\frac{3}{10} \nu_{1}-\frac{3}{5} \nu_{2}=\frac{3}{10} \quad \nu_{1}-2 \nu_{2}=1$
one solution is $\nu_{1}=1, \nu_{2}=0$,
generally $\nu_{1}=1+2 \nu_{2} \Longrightarrow \nu_{1}^{2}+\nu_{2}^{2}=5 \nu_{2}^{2}+4 \nu_{2}+1=1$,
$\nu_{2}\left(5 \nu_{2}+4\right)=0$ thus another solution is $\nu_{2}=-\frac{4}{5}$ and $\nu_{1}=1-\frac{8}{5}=-\frac{3}{5}$
Together $\boldsymbol{\nu}=(1,0)$ or $\boldsymbol{\nu}=\frac{1}{5}(-3,-4)$
Maximum rate is always equal to $\|\nabla f\|=\left\|\left(\frac{3}{10},-\frac{3}{5}\right)\right\|=\frac{3 \sqrt{5}}{10}$.
For 6)
$\nabla f=\left(f_{x}, f_{y}, f_{z}\right)=\left(2 x z e^{y}+z^{2}, x^{2} z e^{y}, x^{2} e^{y}+2 x z\right)$ at P $\nabla f(P)=(12,4,6)=2(6,2,3) \quad,\|\nabla f\|=2 \sqrt{49}=14$ the direction is $\mathbf{u}=-\frac{\nabla f}{\|\nabla f\|}=-\frac{1}{7}(6,2,3)$ and rate is $\|\nabla f\|=14$.

For 7a)

$\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{2 x^{2}+y^{2}}$ does not exists,for sure it is NOT equal to 0 since for $x \neq 0 \quad f(x, x)=\frac{1}{3}$ so f is discontinous at $(0,0)$;
For 7b)
by definition $\quad f_{x}(0,0)=\lim _{x \rightarrow 0} \frac{f(x, 0)-0}{x}=0$
$f_{y}(0,0)=\lim _{y \rightarrow 0} \frac{f(0, y)-0}{y}=0$ so the gradient exists and $\nabla f(0,0)=(0,0)$.
For 7c)
for the directional derivative we have to use the definition
since f is discont.at $(0,0)$ thus partials cannot be cont.at $(0,0)$
unit vector in the direction of the line $y=x \quad x=t, y=t \quad$ is $\mathbf{u}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
$D_{u} f(0,0)=\lim _{t \rightarrow 0} \frac{f\left(\frac{t}{\sqrt{2}}, \frac{t}{\sqrt{2}}\right)-0}{t}=\lim _{t \rightarrow 0} \frac{1}{\frac{1}{t} t^{2}} \frac{\frac{2}{2} t^{2}}{\frac{3}{2}}=\lim _{t \rightarrow 0} \frac{1}{3 t}$ does not exists
OR from a)
since $f(x, x)=\frac{1}{3}$ for $x \neq 0$ and $f(0,0)=0 f$ is not continous along that line so it cannot be differentiable along that line.

For 7d)

for any other point we can use the theorem since partials are continuous $D_{u} f=\nabla f \bullet \mathbf{u}$
first $\quad f_{x}=y \frac{2 x^{2}+y^{2}-4 x^{2}}{\left(2 x^{2}+y^{2}\right)^{2}}=y \frac{y^{2}-2 x^{2}}{\left(2 x^{2}+y^{2}\right)^{2}}$
and $\quad f_{y}=x \frac{2 x^{2}+y^{2}-2 y^{2}}{\left(2 x^{2}+y^{2}\right)^{2}}=x \frac{2 x^{2}-y^{2}}{\left(2 x^{2}+y^{2}\right)^{2}}$ so at the given point
$\nabla f(-1,-1)=\left(\frac{1}{9},-\frac{1}{9}\right)$ and $D_{u} f(-1,-1)=\frac{1}{9 \sqrt{2}}(-1,-1) \bullet(1,1)=0$

