MATH 349
Midterm Handout-Solution

1. Determine if the indicated sequence is bounded, monotonic, and convergent
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so the sequence is convergent and thus bounded.
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it is possible to investigate the series > — by Ratio test
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so the series is convergent and lim ¢, = 0.
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Since b, = — and b,, > 0,lim b,, = 400,80 the sequence is divergent.
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n
from above Z—H = ("T“> > 1, so the sequence is increasing,
n

there is NO upper bound and a lower bound is 0.

2. Determine whether the indicated series is absolutely convergent, conditionally

convergent or divergent.
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so By Comp.Test Z is convergent.



For b)
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. Find the interval of convergence if
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Z (x — 1)k b) > % 2™ (only abs.convergence)
n=1"T
For a)
g1 okl Vk

Tkl 26 2o 2 R=
13

and the series is abs.convergent on (5, 5)
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For the ends z = 1 or 2 we get (—1)"—= or —
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the second one is.divergent since p = % < 1,but the first one is cond.convergent since
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the sequence 7E N O

Together the series is convergent on [%, %)

For b)
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and the series is abs.convergent on (—e, e). The ends are difficult,Sterling formulal
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For b) i ﬂ we need to know the sum of i (z)” for v = —2
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d. (a) Determine if the indicated sequence is bounded, alternating or convergent
2 — (=1)"
Qn = # for n > 3
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Since
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0 < —— <a, < — <1 positive terms,not alternating,bounded

n(n —2) n(n —2)
and convergent to 0 by Squeeze Theorem.
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(b) Is the sequence ¢, = g convergent or monotonic?
c :#—ﬂsince (g)n—>0
"Iy :

also the geometric sequence{ (2

n
3> } is decreasing

so bottom of ¢, is positive and increasing

finally ¢, is positive and decreasing. Since the limit of ¢, is NOT

o0
zero the series Y ¢, is divergent.
n=1

6. Find the Taylor series for f(z) = around the center xqg = —1,particularly the

1
(x+3)x
coefficient ag.

For what values of x is the representation valid?

USE Partial fraction first
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Find Taylor polynomial of degree 3 for f(x) = In“=L around the centre zy = 2.
We can find Taylor series first
=l =n(r—1)—Inr=n(r—-2+1)—In(zx —2+2) =

=In(1+ (x—2)) =2 (1+232) =In(1 + (z - 2)) = In2 - In (1 + 232)
(using In(1+s) = io %
(=)@ —2)"* = (D)@ =2t
wrn T e

=—In2+ Z (n+1) [1 - 2n1+1} (x_Q)nH

for -1 <s<1)
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so T3(z) = —In2 + T;) ((n_j—)l) {1 - 2,}“} (x —2)"H =
=-I2+3@x-2)-2@-2°+ZL(z-2)°

OR
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since f'(z) = [In(z — 1) —Inz]' = -1 — 1 then f"(z) = ﬁ + =%

and a = §£/(2) = ~2, fmally f(x) = i — &
and g = 1/"(2) =3 (1-3) = &
. curve ¢ given as the intersection of

the cone { z = /222 + 2y?} and the plane {z +z = 1}.
from the plane z = 1 — z back to the cone (1 — z)* = 222 + 2y

2
1
l=22+22+2y 2= (z+1)2+2y° 1:(‘7[“4r ) +y?
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and then a parametrization is r=—14++2cost,y =sint and
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11.

z=1—2=2—-+2cost te]0,2n].
For the curve c given by r(t) = (2¢,t%Int) ¢ > 0 find
1
r'(t) = (2,2t, f) and t =1 for P,t = e for R
then for a)
d =r(1) = (2,2,1) and the tangent line is
(x,y,2) =(2,1,0) +s(2,2,1)orx =2+ 2z and y=1+2z
for b) for arclenght we need

1 At 42 1 1 € +1\> 22+1
Hr’(t)|\=\/4+4t2+t—2=\/t—z= : -

212+ 1 ‘
and  s= / t+ dt = [t* + Int]] = €.
1

For the curve ¢ given by  r(t) = (¢sint,tcost, 2t)

(a) find an equation of the tangent line to ¢ at the origin ;
(b) find the arclength between the origin and the point A (%, 0, 7r) :

For a)

r/(t) = (sint + t cost,cost — tsint, 2) product rule

for the origin t = 0 so d =r’(0) = (0, 1,2)

and an equation of the tangent is (x,y,2) =t(0,1,2) or £ =0,2z=2y

For b)

for arclength we need ||r/ (¢)||

Ir' (t)]|* = (sint + tcost)® + (cost — tsint)® +4 = sin? ¢ + 2t sint cost +t2cost+
+cos?t — 2tsint cost +t2sin’t +4 = 5 + ¢2

now , t = 0 for the origin and ¢ = 7 for the point A

so arclength s = / I’ (t)|| dt = / Vb + t2dt = ( Table)=
0

0
~ [WVEFP+ i (t+V5FP)]; =55+ 5+ (3+ 5+ ) - fnv
Find a parametrization of the curve c given as the intersection of two surfaces
c={2?+y* =22 }n{3zx — 4y — 2 = 0}.

from the plane z=3r — 4y into the paraboloid z? + y? = 6z — 8y

22 —6r+124+8y=(x—3)7+(y+4)2-25=0

SO (“”—_3)2 + (y—+4)2 =1 thus a parametrization

5 5
r=3+b5cost y=—4+5sint z =25+ 15cost — 20sint, t € [0,27).



