MATH 349 Midterm Handout-Solution

1. Determine if the indicated sequence is bounded, monotonic, and convergent

a)
$$a_n = \frac{\ell n(n+3)}{n+3}$$
 b) $b_n = \frac{n^n}{n!}$.

For a)

$$\lim_{n \to \infty} a_n = "\frac{\infty}{\infty} L' H.R. = \lim_{x \to \infty} \frac{\frac{1}{x+3}}{1} = "\frac{1}{\infty} = 0$$

so the sequence is convergent and thus bounded.

For monotonicity , define $f(x) = \frac{\ln x}{x}$ $f'(x) = \frac{\frac{1}{x} \cdot x - \ln x}{x^2} = \frac{1 - \ln x}{x^2} < 0$ for $\ln x > 1, x > e$, thus the sequence is decreasing for $x = n + 3 \ge 3, n \ge 1$

and an lower bound is 0, an upper bound is $a_1 = \frac{\ln 4}{4}$.

For b)

$$b_n = \frac{n^n}{n!} = \frac{n \cdot n \cdot \dots \cdot n}{n(n-1)\dots 2 \cdot 1} > n \text{ so } \lim b_n = +\infty$$

it is possible to investigate the series $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ by Ratio test

$$0 < \frac{c_{n+1}}{c_n} = \frac{(n+1)n!}{(n+1)(n+1)^n} \cdot \frac{n^n}{n!} = \left(\frac{n}{n+1}\right)^n \to e^{-1} < 1,$$

so the series is convergent and $\lim c_n = 0$.

Since
$$b_n = \frac{1}{c_n}$$
 and $b_n > 0$, $\lim b_n = +\infty$, so the sequence is divergent.
ALSO

from above $\frac{b_{n+1}}{b_n} = \left(\frac{n+1}{n}\right)^n > 1$, so the sequence is increasing, there is NO upper bound and a lower bound is 0.

there is NO upper bound and a lower bound is 0.

2. Determine whether the indicated series is absolutely convergent, conditionally convergent or divergent.

For a)
$$\sum_{k=1}^{\infty} \frac{\arctan k}{1+k^2}$$

Since $\frac{\pi}{4} = \arctan 1 \leq \arctan k < \frac{\pi}{2}$, so $0 < \frac{\arctan k}{1+k^2} < \frac{const}{k^2}$,
 $\sum_{k=1}^{\infty} \frac{1}{k^2}$ is convergent p-series, $p = 2 > 1$,
so By Comp. Test $\sum_{k=1}^{\infty} \frac{\arctan k}{1+k^2}$ is convergent.

For b)

First abs.convergence
$$\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}\right) = 1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}} + \dots =$$
$$= 1 - \lim_{n \to \infty} \frac{1}{\sqrt{n+1}} = 1 - 0 = 1 \text{(It is a telescoping series.)}$$
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}\right) \text{ is absolutely convergent }.$$
$$\text{For c)} \sum_{k=1}^{\infty} k^2 e^{-k} \text{ convergent by Ratio test}$$
$$0 < \frac{a_{n+1}}{a_n} = \frac{(k+1)^2 e^{-k-1}}{k^2 e^{-k}} = \left(1 + \frac{1}{k}\right)^2 e^{-1} \rightarrow \frac{1}{e} < 1$$
$$\text{For d)} \sum_{n=3}^{\infty} \frac{(-1)^n}{(n^2 - 2n)\sqrt{n}} \text{ is abs.convergent}$$
$$\text{since } \sum_{n=3}^{\infty} \frac{1}{(n^2 - 2n)\sqrt{n}} \sim \sum_{n=3}^{\infty} \frac{1}{n^{\frac{5}{2}}} \text{ which is a p-series where } p = \frac{5}{2} > 1$$
to show the equivalence

$$\lim_{n \to \infty} \frac{\frac{1}{(n^2 - 2n)\sqrt{n}}}{\frac{1}{n^{\frac{5}{2}}}} = \lim_{n \to \infty} \frac{n^{\frac{5}{2}}}{n^{\frac{5}{2}} - 2n^{\frac{3}{2}}} \cdot \frac{n^{-\frac{5}{2}}}{n^{-\frac{5}{2}}} = \lim_{n \to \infty} \frac{1}{1 - 2n^{-1}} = 1 \neq 0 (\text{not } \infty)$$

3. Find the interval of convergence if

(a)
$$\sum_{k=1}^{\infty} \frac{2^k}{\sqrt{k}} (x-1)^k$$
 b) $\sum_{n=1}^{\infty} \frac{n!}{n^n} x^n$ (only abs.convergence)

For a)

$$\left|\frac{a_{k+1}}{a_k}\right| = \frac{2^{k+1}}{\sqrt{k+1}} \cdot \frac{\sqrt{k}}{2^k} = \sqrt{\frac{k}{k+1}} \cdot 2 \to 2, R = \frac{1}{2}$$

and the series is abs.convergent on $\left(\frac{1}{2}, \frac{3}{2}\right)$

For the ends
$$x = \frac{1}{2}$$
 or $\frac{3}{2}$ we get $\sum_{k=1}^{\infty} (-1)^n \frac{1}{\sqrt{k}}$ or $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$

the second one is. divergent since $p=\frac{1}{2}<1, but the first one is cond.$ $convergent since the sequence <math display="inline">\frac{1}{\sqrt{k}}\searrow 0$

Together the series is convergent on $\left[\frac{1}{2}, \frac{3}{2}\right)$

For b)

we investigate
$$\frac{c_{n+1}}{c_n} = \frac{(n+1)n!}{(n+1)(n+1)^n} \cdot \frac{n^n}{n!} = \left(\frac{n}{n+1}\right)^n = \left(1 - \frac{1}{n+1}\right)^n \to e^{-1}, R = e^{-1}$$

and the series is abs.convergent on (-e, e). The ends are difficult, Sterling formula!

4. For a)
$$\sum_{k=1}^{\infty} \frac{(\ell n \, 2)^k}{k!}$$
 we know that $e^s = \sum_{n=0}^{\infty} \frac{s^n}{n!}$ for any s .
So $e^s - 1 = \sum_{n=1}^{\infty} \frac{s^n}{n!}$ and for $s = \ln 2$ we get
 $\sum_{k=1}^{\infty} \frac{(\ell n \, 2)^k}{k!} = e^{\ln 2} - 1 = 2 - 1 = 1.$
For b) $\sum_{n=3}^{\infty} \frac{(-1)^n}{2^n(n+1)}$ we need to know the sum of $\sum_{n=3}^{\infty} \frac{(x)^n}{(n+1)}$ for $x = -\frac{1}{2}$
and $\sum_{n=3}^{\infty} \frac{x^n}{(n+1)} = \frac{1}{x} \sum_{n=3}^{\infty} \frac{x^{n+1}}{(n+1)} = \frac{1}{x} \left[\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)} - \frac{x^3}{3} - \frac{x^2}{2} - \frac{x}{1} \right]$
and since we know that $\ln(1-x) = -\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)}$
 $\sum_{n=3}^{\infty} \frac{x^n}{(n+1)} = -\frac{1}{x} \ln(1-x) - \frac{x^2}{3} - \frac{x}{2} - 1$ and finally for $x = -\frac{1}{2}$
 $\sum_{n=3}^{\infty} \frac{(-1)^n}{(n+1)} = 2 \ln \frac{3}{2} - \frac{1}{12} + \frac{1}{4} - 1 = 2 \ln \frac{3}{2} - \frac{1-3+12}{12} = 2 \ln \frac{3}{2} - \frac{5}{6}.$

5. (a) Determine if the indicated sequence is bounded, alternating or convergent $a_n = \frac{2 - (-1)^n}{n^2 - 2n} \text{ for } n \ge 3$ Since $0 \le \frac{1}{n^2} \le a \le \frac{3}{n^2} \le 1 \text{ positive terms not alternating bounded}$

 $0 < \frac{1}{n(n-2)} \le a_n \le \frac{3}{n(n-2)} < 1$ positive terms, not alternating, bounded and convergent to 0 by Squeeze Theorem.

(b) Is the sequence
$$c_n = \frac{3^n}{3^n - 2^n}$$
 convergent or monotonic?
 $c_n = \frac{1}{1 - (\frac{2}{3})^n} \to 1$ since $\left(\frac{2}{3}\right)^n \to 0$

also the geometric sequence $\left\{ \left(\frac{2}{3}\right)^n \right\}$ is decreasing so bottom of c_n is positive and increasing finally c_n is positive and decreasing. Since the limit of c_n is NOT zero the series $\sum_{n=1}^{\infty} c_n$ is divergent.

6. Find the Taylor series for $f(x) = \frac{1}{(x+3)x}$ around the center $x_0 = -1$, particularly the coefficient a_6 .

For what values of x is the representation valid?

USE Partial fraction first

$$\begin{aligned} \frac{1}{(x+3)x} &= \frac{1}{3} \left[\frac{-1}{x+3} + \frac{1}{x} \right] = \frac{1}{3} \left[\frac{-1}{(x+1)+2} + \frac{1}{(x+1)-1} \right] = \\ &= \frac{1}{3} \left[\frac{-1}{2} \cdot \frac{1}{1+\frac{x+1}{2}} - \frac{1}{1-(x+1)} \right] = \\ &(\text{ using } \frac{1}{1+r} = \sum_{n=0}^{\infty} (-r)^n \text{ for } r = \frac{x+1}{2} \text{ and } \frac{1}{1-r} = \sum_{n=0}^{\infty} r^n \text{ for } r = x+1) \\ &= -\frac{1}{6} \sum_{n=0}^{\infty} (-1)^n \left(\frac{x+1}{2} \right)^n - \frac{1}{3} \sum_{n=0}^{\infty} (x+1)^n = \frac{-1}{3} \sum_{n=0}^{\infty} \left[\frac{(-1)^n}{2^{n+1}} + 1 \right] (x+1)^n \\ &\text{ for } -1 < \frac{x+1}{2} < 1 \qquad -2 < x+1 < 2 \text{ and } -1 < x+1 < 1 \text{ ,together} \\ &-2 < x < 0. \text{ And } a_6 = -\frac{1}{3} \cdot \left[\frac{1}{2^7} + 1 \right] = -\frac{1+2^7}{3 \cdot 2^7} = -\frac{129}{384}. \end{aligned}$$

7. Find Taylor polynomial of degree 3 for $f(x) = \ln \frac{x-1}{x}$ around the centre $x_0 = 2$. We can find Taylor series first

$$\ln \frac{x-1}{x} = \ln (x-1) - \ln x = \ln(x-2+1) - \ln(x-2+2) =$$

$$= \ln(1+(x-2)) - \ln 2\left(1+\frac{x-2}{2}\right) = \ln(1+(x-2)) - \ln 2 - \ln\left(1+\frac{x-2}{2}\right)$$
(using $\ln(1+s) = \sum_{n=0}^{\infty} \frac{(-1)^n s^{n+1}}{(n+1)}$ for $-1 < s \le 1$)
$$= \sum_{n=0}^{\infty} \frac{(-1)^n (x-2)^{n+1}}{(n+1)} - \ln 2 - \sum_{n=0}^{\infty} \frac{(-1)^n (x-2)^{n+1}}{(n+1)2^{n+1}} =$$

$$= -\ln 2 + \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)} \left[1 - \frac{1}{2^{n+1}}\right] (x-2)^{n+1}$$
so $T_3(x) = -\ln 2 + \sum_{n=0}^{2} \frac{(-1)^n}{(n+1)} \left[1 - \frac{1}{2^{n+1}}\right] (x-2)^{n+1} =$

$$= -\ln 2 + \frac{1}{2} (x-2) - \frac{3}{8} (x-2)^2 + \frac{7}{24} (x-2)^3$$
OR
$$a_0 = f(2) = \ln \frac{1}{2} = -\ln 2$$

$$a_{0} = f(2) = \ln \frac{1}{2} = -\ln 2 \qquad a_{1} = f'(2) = \frac{1}{2}$$

since $f'(x) = [\ln(x-1) - \ln x]' = \frac{1}{x-1} - \frac{1}{x}$, then $f''(x) = \frac{-1}{(x-1)^{2}} + \frac{1}{x^{2}}$
and $a_{2} = \frac{1}{2}f''(2) = -\frac{3}{8}$, finally $f'''(x) = \frac{2}{(x-1)^{3}} - \frac{2}{x^{3}}$
and $a_{3} = \frac{1}{6}f'''(2) = \frac{1}{3} \cdot \left(1 - \frac{1}{8}\right) = \frac{7}{24}$.

8. curve c given as the intersection of the cone { $z = \sqrt{2x^2 + 2y^2}$ } and the plane {z + x = 1 }. from the plane z = 1 - x back to the cone $(1 - x)^2 = 2x^2 + 2y^2$ $1 = x^2 + 2x + 2y^2$ $2 = (x + 1)^2 + 2y^2$ $1 = \left(\frac{x + 1}{\sqrt{2}}\right)^2 + y^2$ and then a parametrization is $x = -1 + \sqrt{2}\cos t, y = \sin t$ and

$$z = 1 - x = 2 - \sqrt{2}\cos t$$
 $t \in [0, 2\pi].$

9. For the curve c given by $\mathbf{r}(t) = (2t, t^2, \ln t), t > 0$ find

$$\mathbf{r}'(t) = \left(2, 2t, \frac{1}{t}\right) \text{ and } t = 1 \text{ for } P, t = e \text{ for } R$$

then **for a**)
$$\mathbf{d} = \mathbf{r}(1) = (2, 2, 1) \text{ and the tangent line is}$$

$$(x, y, z) = (2, 1, 0) + s (2, 2, 1) \text{ or } x = 2 + 2z \text{ and } y = 1 + 2z$$

for b) for arclenght we need
$$\|\mathbf{r}'(t)\| = \sqrt{4 + 4t^2 + \frac{1}{t^2}} = \sqrt{\frac{4t^4 + 4t^2 + 1}{t^2}} = \sqrt{\left(\frac{2t^2 + 1}{t}\right)^2} = \frac{2t^2 + 1}{|t|}$$

and $s = \int_{1}^{e} \frac{2t^2 + 1}{t} dt = [t^2 + \ln t]_{1}^{e} = e^2.$

10. For the curve c given by $\mathbf{r}(t) = (t \sin t, t \cos t, 2t)$

- (a) find an equation of the tangent line to c at the origin ;
- (b) find the arclength between the origin and the point $A\left(\frac{\pi}{2}, 0, \pi\right)$.

For a)

 $\mathbf{r}'(t) = (\sin t + t \cos t, \cos t - t \sin t, 2)$ product rule for the origin t = 0 so $\mathbf{d} = \mathbf{r}'(0) = (0, 1, 2)$ and an equation of the tangent is (x, y, z) = t(0, 1, 2) or x = 0, z = 2y

For b)

for arclength we need $\|\mathbf{r}'(t)\|$ $\|\mathbf{r}'(t)\|^2 = (\sin t + t \cos t)^2 + (\cos t - t \sin t)^2 + 4 = \sin^2 t + 2t \sin t \cos t + t^2 \cos^2 t + \cos^2 t + \cos^2 t - 2t \sin t \cos t + t^2 \sin^2 t + 4 = 5 + t^2$ now, t = 0 for the origin and $t = \frac{\pi}{2}$ for the point Aso arclength $s = \int_{0}^{\frac{\pi}{2}} \|\mathbf{r}'(t)\| dt = \int_{0}^{\frac{\pi}{2}} \sqrt{5 + t^2} dt = (\text{ Table}) = \left[\frac{t}{2}\sqrt{5 + t^2} + \frac{5}{2}\ln\left(t + \sqrt{5 + t^2}\right)\right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{4}\sqrt{5 + \frac{\pi^2}{4}} + \frac{5}{2}\ln\left(\frac{\pi}{2} + \sqrt{5 + \frac{\pi^2}{4}}\right) - \frac{5}{2}\ln\sqrt{5}.$ 11. Find a parametrization of the curve c given as the intersection of two surfaces $c = \{x^2 + y^2 = 2z\} \cap \{3x - 4y - z = 0\}.$

from the plane z = 3x - 4y into the paraboloid $x^2 + y^2 = 6x - 8y$ $x^2 - 6x + y^2 + 8y = (x - 3)^2 + (y + 4)^2 - 25 = 0$ so $\left(\frac{x-3}{5}\right)^2 + \left(\frac{y+4}{5}\right)^2 = 1$ thus a parametrization $x = 3 + 5\cos t$ $y = -4 + 5\sin t$ $z = 25 + 15\cos t - 20\sin t, t \in [0, 2\pi)$.