FINAL HANDOUT MATH 349 SOLUTION .

1. for
$$\sum_{n=1}^{\infty} \frac{(3x-1)^n}{3^{3n}\sqrt{n}} = \sum_{n=1}^{\infty} \frac{3^n (x-\frac{1}{3})^n}{3^{3n}\sqrt{n}}.$$

the centre is $c = \frac{1}{3}$ and the coefficients $a_n = \frac{1}{3^{2n}\sqrt{n}}$

the radius of convergence $R = \frac{1}{L} = 9$

since
$$L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{3^{2n} \sqrt{n}}{3^{2n+2} \sqrt{n+1}} = \frac{1}{9} \lim_{n \to \infty} \sqrt{\frac{n}{n+1}} = \frac{1}{9}$$

thus the series is absolutely convergent on $\left(\frac{1}{3}-9,\frac{1}{3}+9\right)=\left(\frac{-26}{3},\frac{28}{3}\right)$

ends:
$$x = \frac{1}{3} + 9$$
 gives $\sum_{n=1}^{\infty} \frac{\left(x - \frac{1}{3}\right)^n}{3^{2n}\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ which is divergent p-series $p = \frac{1}{2} < 1$

for
$$x = \frac{1}{3} - 9$$
 gives $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ which is cond.convergent since the sequence $\frac{1}{\sqrt{n}} \setminus 0$

(positive,decr.since $\frac{1}{\text{incr.}}$, and limit is $\frac{1}{\infty} = 0$)

together the interval of convergence is $\left[\frac{-26}{3}, \frac{28}{3}\right)$, outside the series is divergent.

2. we know that
$$e^s = \sum_{n=0}^{\infty} \frac{s^n}{n!}$$
 for any s , use $s = x + 1$

then
$$f(x) = xe^x = [(x+1)-1]e^{x+1}e^{-1} = \frac{1}{e}(x+1)\sum_{n=0}^{\infty} \frac{(x+1)^n}{n!} - \frac{1}{e}\sum_{n=0}^{\infty} \frac{(x+1)^n}{n!} = \frac{1}{e}(x+1)e^{-1}$$

$$=\frac{1}{e}\sum_{n=0}^{\infty}\frac{(x+1)^{n+1}}{n!}-\frac{1}{e}\sum_{n=0}^{\infty}\frac{(x+1)^n}{n!}=\frac{1}{e}\sum_{k=1}^{\infty}\frac{(x+1)^k}{(k-1)!}-\frac{1}{e}\sum_{n=0}^{\infty}\frac{(x+1)^n}{n!}=$$

$$= -\frac{1}{e} + \frac{1}{e} \sum_{k=1}^{\infty} \left[\frac{1}{(k-1)!} - \frac{1}{k!} \right] (x+1)^k = -\frac{1}{e} + \frac{1}{e} \sum_{k=1}^{\infty} \frac{k-1}{k!} (x+1)^k$$
 for any x .

3. For the curve
$$c = \{z = x^2 + y^2\} \cap \{6x - 2y - z = 1\}$$

for a) $z = x^2 + y^2 = 6x - 2y - 1$ so $x^2 + y^2 - 6x + 2y + 1 = 0$, complete the squares

$$(x-3)^2 + (y+1)^2 = 9$$
 and $\left(\frac{x-3}{3}\right)^2 + \left(\frac{y+1}{3}\right)^2 = 1$ so

$$x = 3 + 3\cos t, y = -1 + 3\sin t, z = 6x - 2y - 1 = 19 + 18\cos t - 6\sin t, t \in [0, 2\pi)$$

for b) we have two options to find \overrightarrow{d} in $(x, y, z) = (0, -1, 1) + t \overrightarrow{d}$

from part a:

$$t=\pi$$
 for the point $P=\overrightarrow{r}(\pi)$ and $\overrightarrow{d}=\overrightarrow{r}'(\pi)=(0,-3,6)$ or $(0,1,-2)$

since
$$\overrightarrow{r}'(t) = (-3\sin t, 3\cos t, -18\sin t - 6\cos t)$$

OR

$$\overrightarrow{d} = \overrightarrow{n_1} \times \overrightarrow{n_2} \text{ where } \overrightarrow{n_1} = \nabla F = (2x, 2y, -1) \text{ then at } P \ \overrightarrow{n_1} = (0, -2, -1)$$
where $F(x, y, z) = x^2 + y^2 - z = 0$ and $G(x, y, z) = 6x - 2y - z = 1$
and $\overrightarrow{n_2} = \nabla G = (6, -2, -1)$ so $(x, y, z) = (0, -1, 1) + t(0, 1, -2)$.

for c) for P $t = \pi$ and for R $t = \frac{\pi}{2}$, also
$$\|\overrightarrow{r}''(t)\| = \sqrt{9 + 36(3\sin t + \cos t)^2} = \sqrt{45 + 36(8\sin^2 t + 6\sin t \cos t)}$$
so $s = \int_{\frac{\pi}{2}}^{\pi} \sqrt{45 + 72(4\sin^2 t + 3\sin t \cos t)} dt$.

- 4. the equation $z = f(1, -1) + \nabla f(1, -1) \bullet (x 1, y + 1) = 1 (x 1)$ gives x + z = 2 since for $f(x, y) = e^{yx^2 \ln x}$ f(1, -1) = 1, $f_x(x, y) = e^{yx^2 \ln x} (2xy \ln x + yx)$ $f_x(1, -1) = -1$ $f_y(x, y) = e^{yx^2 \ln x} x^2 \ln x$ $f_y(1, -1) = 0$ OR $\overrightarrow{n} = (\nabla f(1, -1), -1) = (-1, 0 1)$ and the point is (1, -1, f(1, -1)) = (1, -1, 1) so -x z = d and through P(1, -1, 1) x + z = 2.
- 5. **for a)** at the origin we have to use the definition:

$$f_x(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = \lim_{x \to 0} \frac{1 - 0}{x} = \lim_{x \to 0^{\pm}} \frac{1}{x} \qquad DNE \ (\pm \infty)$$
$$f_y(0,0) = \lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y} = \lim_{y \to 0} \frac{0 - 0}{y} = 0$$

thus the gradient does not exist at (0,0).

for b) since
$$f(x,x) = \frac{1}{4}$$
 for any $x \neq 0$ $\lim_{(x,y)\to(0,0)} f(x,y) \neq 0 = f(0,0)$ the function is discont. at $(0,0)$.

6. for the domain $\frac{x}{y} > 0$ both positive OR both negative so the domain consists of the first and third quadrants without the axes for level curves for any c $c = \ln \frac{x}{y}, e^c = \frac{x}{y}, y = e^{-c}x \qquad \text{lines through the origin}$

without the origin and with positive slopes $m = e^{-c} = 1, e, \frac{1}{e}$ since we got a level curve for any c the range is $(-\infty, \infty)$.

7. $\nabla f = (2xe^{-y}, -e^{-y}(x^2 + \cos z), -e^{-y}\sin z)$ all partials are cont.functions so $D_v f = \nabla f \bullet v$ where v is the unit vector in the direction of $\overrightarrow{AB} = (-3, -1, -\pi)$ and $\|\overrightarrow{AB}\| = \sqrt{10 + \pi^2}, \nabla f(A) = (4, -3, 0)$ and finally $D_v f(A) = \frac{1}{\sqrt{10 + \pi^2}} (4, -3, 0) \bullet (-3, -1, -\pi) = \frac{-9}{\sqrt{10 + \pi^2}}.$

8.
$$\frac{\partial F}{\partial u}(u,v) = \nabla f(x,y) \bullet \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}\right) = (f_x, f_y) \bullet \left(v^2, \frac{1}{v}\right), \text{ where } x = uv^2, y = \frac{u}{v}.$$
now for $u = 2, v = -1$ $x = 2, y = -2$ so we need $f_x(2, -2) = 3, f_y(2, -2) = -2$ and $\frac{\partial F}{\partial u}(2, -1) = (3, -2) \bullet (1, -1) = 5.$

9. **for a**)

for
$$T=0$$
 $y^2-3x^2=0$ $y=\pm x\sqrt{3}$ two lines
for $T=3$ $y^2-3x^2=3$ hyperbola with intercepts $y=\pm\sqrt{3}, x=0$
for $T=6$ $y^2-3x^2=-6$ hyperbola with intercepts $x=\pm\sqrt{2}, y=0$
for **b**)

the direction is $-\nabla T(-1,2)$

so first
$$\nabla T = (-6x, 2y)$$
 then $\nabla T (-1, 2) = (6, 4) = 2(3, 2)$ so $\mathbf{v} = \frac{-1}{\sqrt{13}}(3, 2)$.

10. Define
$$F_1(x, y, z) = xy^2 - z + u^2$$
, $F_2(x, y, z) = x^3z + 2y - u$
 $F_3(x, y, z) = xu + y - xyz$.

since all partials are continuous function the only condition is that

$$\left\| \frac{\partial (F_1, F_2, F_3)}{\partial (x, y, z)} \right\| = \det \begin{bmatrix} \frac{\partial F_1}{\partial x} & \frac{\partial F_1}{\partial y} & \frac{\partial F_1}{\partial z} \\ \frac{\partial F_2}{\partial x} & \frac{\partial F_2}{\partial y} & \frac{\partial F_2}{\partial z} \\ \frac{\partial F_3}{\partial x} & \frac{\partial F_3}{\partial y} & \frac{\partial F_3}{\partial z} \end{bmatrix} \neq 0 \text{ at the given point}$$

so
$$\det \begin{bmatrix} y^2 & 2xy & -1 \\ 3x^2z & 2 & x^3 \\ u - yz & 1 - xz & -xy \end{bmatrix}$$
 at the given point $= \det \begin{bmatrix} 1 & 2 & -1 \\ -3 & 2 & 1 \\ 2 & 2 & -1 \end{bmatrix} = 1 \cdot \det \begin{bmatrix} 2 & 1 \\ 2 & -1 \end{bmatrix} - (-3) \cdot \det \begin{bmatrix} 2 & -1 \\ 2 & -1 \end{bmatrix} + 2 \cdot \det \begin{bmatrix} 2 & -1 \\ 2 & 1 \end{bmatrix} = -4 + 0 + 8 = 4 \neq 0$

11. For $f(x,y) = \ln(y\cos x) \ x = 0, y = 1$

$$T_2(x,y) = f(0,1) + \nabla f(0,1) \bullet (x,y-1) + \frac{1}{2} [Ax^2 + 2Bx(y-1) + C(y-1)^2]$$
so $f(0,1) = \ln 1 = 0$, since $f(x,y) = \ln y + \ln \cos x$ $f_x = -\frac{\sin x}{\cos x} = -\tan x$

$$f_y = \frac{1}{y} \quad f_{xx} = -\sec^2 x = \frac{-1}{\cos^2 x} \quad f_{xy} = 0 \quad f_{yy} = -\frac{1}{y^2}$$
and $A = f_{xx}(0,1) = -1$, $B = f_{xy} = 0$ $C = f_{yy}(0,1) = -1$

thus

$$T_2(x,y) = 0 + (0,1) \bullet (x,y-1) + \frac{1}{2} \left[-x^2 + 0x(y-1) - (y-1)^2 \right] =$$

$$= y - 1 - \frac{x^2}{2} - \frac{(y-1)^2}{2}.$$

12. Define
$$F(x, y, z) = \arcsin(zy) + z^3x + x^2y + 8$$

then
$$\frac{\partial F}{\partial x} = z^3 + 2xy$$
 $\frac{\partial F}{\partial y} = \frac{z}{\sqrt{1 - z^2y^2}} + x^2$ and $\frac{\partial F}{\partial z} = \frac{y}{\sqrt{1 - z^2y^2}} + 3z^2x$

all functions are cont. at the point P(-1,0,2) and $\frac{\partial F}{\partial z}(P) = -12 \neq 0$ so the equation can be solved for z as a function of x,y around he point P(-1,0,2)

then
$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} = -\frac{2xy + z^3}{\frac{y}{\sqrt{1 - z^2y^2}} + 3z^2x} = \frac{-8}{-12} = \frac{2}{3}$$
 at P and

$$\frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}} = -\frac{\frac{z}{\sqrt{1 - z^2 y^2}} + x^2}{\frac{y}{\sqrt{1 - z^2 y^2}} + 3z^2 x} = -\frac{3}{-12} = \frac{1}{4} \text{ at that point.}.$$