FINAL HANDOUT MATH 349 SOLUTION .

1. For
$$a_n = \frac{n^3}{3^n}$$
 $a_n > 0$, so not alternating; define $f(x) = \frac{x^3}{3^x}$ for $x > 0$
then $\lim_{x \to \infty} \frac{x^3}{3^x} = {}^n \sum_{\infty} (L^*H.R.-3 \text{ times}) = \lim_{x \to \infty} \frac{3x^2}{3^x \ln 3} = \dots \lim_{x \to \infty} \frac{6}{3^x (\ln 3)^3} = {}^n \frac{6}{\infty} = 0$
the sequence is convergent therefore bounded
 $f'(x) = \left(\frac{x^3}{3^x}\right)' = \frac{3x^{23x} - x^{33x} \ln 3}{(3^x)^2} = \frac{x^2(3 - x \ln 3)}{3^x} < 0$ if $x > \frac{3}{n^3} = 2.73$
thus the sequence is ult.decr. for $n \ge 3$
 $a_1 = \frac{1}{3} < a_2 = \frac{8}{9} < a_3 = 1$ so an upper bound is 1, a lower bound is 0.
2. for $\sum_{n=1}^{\infty} \frac{(3x - 1)^n}{3^{3n}\sqrt{n}} = \sum_{n=1}^{\infty} \frac{3^n (x - \frac{1}{3})^n}{3^{3n}\sqrt{n}}$.
the centre is $c = \frac{1}{3}$ and the coefficients $a_n = \frac{1}{3^{2n}\sqrt{n}}$
the radius of convergence $R = \frac{1}{L} = 9$
since $L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{3^{2n}\sqrt{n}}{3^{2n+2}\sqrt{n+1}} = \frac{1}{9}\lim_{n \to \infty} \sqrt{\frac{n}{n+1}} = \frac{1}{9}$
thus the series is absolutely convergent on $(\frac{1}{3} - 9, \frac{1}{3} + 9) = (\frac{-26}{3}, \frac{28}{3})$
ends: $x = \frac{1}{3} + 9$ gives $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ which is cond.convergent since the sequence $\frac{1}{\sqrt{n}} \searrow 0$
(positive, decr.since $\frac{1}{1nc}$, and limit is $\frac{1}{\infty} = 0$)
together the interval of convergence is $[\frac{-26}{3}, \frac{23}{3})$, outside the series is divergent.
3. we know that $e^x = \sum_{n=0}^{\infty} \frac{8^n}{n!}$ for any s , use $s = x + 1$
then $f(x) = xe^x = [(x+1)-1]e^{x+1}e^{-1} = \frac{1}{e}(x+1)\sum_{n=0}^{\infty} \frac{(x+1)^n}{n!} - \frac{1}{e}\sum_{n=0}^{\infty} \frac{(x+1)^n}{n!} = \frac{1}{e}\sum_{n=0}^{\infty} \frac{(x+1)^{n+1}}{n!} - \frac{1}{e}\sum_{n=0}^{\infty} \frac{(x+1)^n}{n!} = \frac{1}{e}\sum_{n=0}^{\infty} \frac{(x+1)^{n+1}}{n!} = \frac{1}{e}\sum_{n=0}^{\infty} \frac{(x+1)^n}{n!} = \frac{1}{e}\sum_{n=0}^{\infty} \frac{(x+1)^n}{n!$

$$= -\frac{1}{e} + \frac{1}{e} \sum_{k=1}^{\infty} \left[\frac{1}{(k-1)!} - \frac{1}{k!} \right] (x+1)^k = -\frac{1}{e} + \frac{1}{e} \sum_{k=1}^{\infty} \frac{k-1}{k!} (x+1)^k \text{ for any } x.$$

check $a_0 = f(-1) = -e^{-1}.$

1

4. For the curve
$$c = \{z = x^2 + y^2\} \cap \{6x - 2y - z = 1\}$$

for a) $z = x^2 + y^2 = 6x - 2y - 1$ so $x^2 + y^2 - 6x + 2y + 1 = 0$, complete the squares
 $(x - 3)^2 + (y + 1)^2 = 9$ and $(\frac{x - 3}{3})^2 + (\frac{y + 1}{3})^2 = 1$ so
 $x = 3 + 3 \cos t, y = -1 + 3 \sin t, z = 6x - 2y - 1 = 19 + 18 \cos t - 6 \sin t$, $t \in [0, 2\pi)$
for b) we have two options to find \vec{d} in $(x, y, z) = (0, -1, 1) + t \vec{d}$
from part a:
 $t = \pi$ for the point $P = \vec{r}(\pi)$ and $\vec{d} = \vec{r}'(\pi) = (0, -3, 6)$ or $(0, 1, -2)$
since $\vec{r}'(t) = (-3 \sin t, 3 \cos t, -18 \sin t - 6 \cos t)$
OR
 $\vec{d} = \vec{n_1} \times \vec{n_2}$ where $\vec{n_1} = \nabla F = (2x, 2y, -1)$ then at P $\vec{n_1} = (0, -2, -1)$
where $F(x, y, z) = x^2 + y^2 - z = 0$ and $G(x, y, z) = 6x - 2y - z = 1$
and $\vec{n_2} = \nabla G = (6, -2, -1)$ $\vec{n_1} \times \vec{n_2} = (0, 6, -12) = 6 (0, 1, -2)$
so $(x, y, z) = (0, -1, 1) + t (0, 1, -2)$.
for c) for P $t = \pi$ and for R $t = \frac{\pi}{2}$, also
 $\|\vec{r}'(t)\| = \sqrt{9 + 36 (3 \sin t + \cos t)^2} = \sqrt{45 + 36(8 \sin^2 t + 6 \sin t \cos t)}$
so $s = \int_{\frac{\pi}{2}}^{\pi} \sqrt{45 + 72(4 \sin^2 t + 3 \sin t \cos t)} dt$.
5. the equation $z = f(1, -1) + \nabla f(1, -1) \bullet (x - 1, y + 1) = 1 - (x - 1)$ gives
 $z = 1 - (x - 1) = 2 - x$
since for $f(x, y) = e^{yx^2 \ln x}$ $f(1, -1) = 1$,
 $f_x(x, y) = e^{yx^2 \ln x} (2xy \ln x + yx)$ $f_x(1, -1) = -1$
 $f_y(x, y) = e^{yx^2 \ln x} x^2 \ln x$ $f_y(1, -1) = 0$

 $\overrightarrow{n} = (\nabla f(1, -1), -1) = (-1, 0, -1)$ and the point is (1, -1, f(1, -1)) = (1, -1, 1)so -x - z = d and through P(1, -1, 1) x + z = 2.

6. for a) at the origin we have to use the definition:

$$f_x(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = \lim_{x \to 0} \frac{1-0}{x} = \lim_{x \to 0^{\pm}} \frac{1}{x} \qquad DNE \ (\pm \infty)$$

$$f_y(0,0) = \lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y} = \lim_{y \to 0} \frac{0-0}{y} = 0$$
thus the gradient does not exist at (0,0).

for b) since
$$f(x, x) = \frac{1}{4}$$
 for any $x \neq 0$ $\lim_{(x,y)\to(0,0)} f(x, y) \neq 0 = f(0,0)$

the function is discont. at (0,0).

7. . for the domain $\frac{x}{y} > 0$ both positive OR both negative so the domain consists of the first and third quadrants without the axes for level curves for any c $c = \ln \frac{x}{y}, e^c = \frac{x}{y}, y = e^{-c}x$ lines through the origin without the origin and with positive slopes $m = e^{-c} = 1, e, \frac{1}{e}$ since we got a level curve for any c the range is $z \in (-\infty, \infty)$.

8.
$$\nabla f = (2xe^{-y}, -e^{-y}(x^2 + \cos z), -e^{-y}\sin z)$$
 all partials are cont.functions so
 $D_v f = \nabla f \bullet v$ where $\nabla f(A) = (4, -3, 0)$
 v is the unit vector in the direction of $\overrightarrow{AB} = (-3, -1, -\pi)$
and $\left\|\overrightarrow{AB}\right\| = \sqrt{10 + \pi^2}$ and finally
 $D_v f(A) = \frac{1}{\sqrt{10 + \pi^2}} (4, -3, 0) \bullet (-3, -1, -\pi) = \frac{-9}{\sqrt{10 + \pi^2}}.$

-2

9. Since
$$x = uv^2$$
, $y = \frac{u}{v}$. for $u = 2$, $v = -1$
 $x = 2$ $y = -2$ so we need $f_x(2, -2) = 3$, $f_y(2, -2) = \frac{\partial F}{\partial u}(u, v) = \nabla f(x, y) \bullet \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}\right) = (f_x, f_y) \bullet \left(v^2, \frac{1}{v}\right)$
and $\frac{\partial F}{\partial u}(2, -1) = (3, -2) \bullet (1, -1) = 5$.

10. for a)

for T = 0 $y^2 - 3x^2 = 0$ $y = \pm x\sqrt{3}$ two lines for T = 3 $y^2 - 3x^2 = 3$ hyperbola with intercepts $y = \pm\sqrt{3}, x = 0$ for T = 6 $y^2 - 3x^2 = -6$ hyperbola with intercepts $x = \pm\sqrt{2}, y = 0$ for b)

the direction is $-\nabla T(-1,2)$

so first
$$\nabla T = (-6x, 2y)$$
 then $\nabla T (-1, 2) = (6, 4) = 2 (3, 2)$ so $\mathbf{u} = \frac{-1}{\sqrt{13}} (3, 2)$.
for c)

the direction must be perpendicular to $\nabla T(-1,2) = 2(3,2)$ so $\mathbf{u} = \frac{\pm 1}{\sqrt{13}}(2,-3)$

11. Define $F_1(x, y, z) = xy^2 - z + u^2$, $F_2(x, y, z) = x^3z + 2y - u$ $F_3(x, y, z) = xu + y - xyz$.

since all partials are continuous function the only condition is that

$$\begin{split} \left\| \frac{\partial \left(F_1, F_2, F_3\right)}{\partial \left(x, y, z\right)} \right\| &= \det \begin{bmatrix} \frac{\partial F_1}{\partial x} & \frac{\partial F_1}{\partial y} & \frac{\partial F_2}{\partial z} \\ \frac{\partial F_3}{\partial x} & \frac{\partial F_3}{\partial y} & \frac{\partial F_3}{\partial z} \end{bmatrix} \neq 0 \text{ at the given point} \\ &= 0 \text{ at the given point given giv$$

then
$$\frac{\partial x}{\partial x} = -\frac{\partial x}{\partial F} = -\frac{y}{\sqrt{1-z^2y^2}} + 3z^2x = -12 = \frac{1}{3}$$
 at P and
 $\frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}} = -\frac{\frac{z}{\sqrt{1-z^2y^2}} + x^2}{\frac{y}{\sqrt{1-z^2y^2}} + 3z^2x} = -\frac{3}{-12} = \frac{1}{4}$ at that point...