FINAL HANDOUT

MATH 349 SOLUTION .

1. For $a_{n}=\frac{n^{3}}{3^{n}} \quad a_{n}>0$,so not alternating; define $f(x)=\frac{x^{3}}{3^{x}}$ for $x>0$ then $\lim _{x \rightarrow \infty} \frac{x^{3}}{3^{x}}="{ }_{\infty}^{\infty} "($ L'H.R.-3 times $)=\lim _{x \rightarrow \infty} \frac{3 x^{2}}{3^{x} \ln 3}=. . \lim _{x \rightarrow \infty} \frac{6}{3^{x}(\ln 3)^{3}}=" \frac{6}{\infty} "=0$ the sequence is convergent therefore bounded
$f^{\prime}(x)=\left(\frac{x^{3}}{3^{x}}\right)^{\prime}=\frac{3 x^{2} 3^{x}-x^{3} 3^{x} \ln 3}{\left(3^{x}\right)^{2}}=\frac{x^{2}(3-x \ln 3)}{3^{x}}<0$ if $x>\frac{3}{\ln 3}=2.73$
thus the sequence is ult.decr. for $n \geq 3$
$a_{1}=\frac{1}{3}<a_{2}=\frac{8}{9}<a_{3}=1$ so an upper bound is 1 , a lower bound is 0 .
2. for $\sum_{n=1}^{\infty} \frac{(3 x-1)^{n}}{3^{3 n} \sqrt{n}}=\sum_{n=1}^{\infty} \frac{3^{n}\left(x-\frac{1}{3}\right)^{n}}{3^{3 n} \sqrt{n}}$.
the centre is $c=\frac{1}{3}$ and the coefficients $a_{n}=\frac{1}{3^{2 n} \sqrt{n}}$
the radius of convergence $R=\frac{1}{L}=9$
since $L=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{3^{2 n} \sqrt{n}}{3^{2 n+2} \sqrt{n+1}}=\frac{1}{9} \lim _{n \rightarrow \infty} \sqrt{\frac{n}{n+1}}=\frac{1}{9}$
thus the series is absolutely convergent on $\left(\frac{1}{3}-9, \frac{1}{3}+9\right)=\left(\frac{-26}{3}, \frac{28}{3}\right)$
ends: $x=\frac{1}{3}+9$ gives $\sum_{n=1}^{\infty} \frac{\left(x-\frac{1}{3}\right)^{n}}{3^{2 n} \sqrt{n}}=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ which is divergent p-series $p=\frac{1}{2}<1$
for $x=\frac{1}{3}-9$ gives $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$ which is cond.convergent since the sequence $\frac{1}{\sqrt{n}} \searrow 0$
(positive,decr.since $\frac{1}{\text { incr. }}$, and limit is $\frac{1}{\infty}=0$)
together the interval of convergence is $\left[\frac{-26}{3}, \frac{28}{3}\right)$, outside the series is divergent.
3. we know that $\quad e^{s}=\sum_{n=0}^{\infty} \frac{s^{n}}{n!}$ for any s, use $s=x+1$ then $f(x)=x e^{x}=[(x+1)-1] e^{x+1} e^{-1}=\frac{1}{e}(x+1) \sum_{n=0}^{\infty} \frac{(x+1)^{n}}{n!}-\frac{1}{e} \sum_{n=0}^{\infty} \frac{(x+1)^{n}}{n!}=$ $=\frac{1}{e} \sum_{n=0}^{\infty} \frac{(x+1)^{n+1}}{n!}-\frac{1}{e} \sum_{n=0}^{\infty} \frac{(x+1)^{n}}{n!}=\frac{1}{e} \sum_{k=1}^{\infty} \frac{(x+1)^{k}}{(k-1)!}-\frac{1}{e} \sum_{n=0}^{\infty} \frac{(x+1)^{n}}{n!}=$ $=-\frac{1}{e}+\frac{1}{e} \sum_{k=1}^{\infty}\left[\frac{1}{(k-1)!}-\frac{1}{k!}\right](x+1)^{k}=-\frac{1}{e}+\frac{1}{e} \sum_{k=1}^{\infty} \frac{k-1}{k!}(x+1)^{k}$ for any x. check $a_{0}=f(-1)=-e^{-1}$.
4. For the curve $c=\left\{z=x^{2}+y^{2}\right\} \cap\{6 x-2 y-z=1\}$
for a) $z=x^{2}+y^{2}=6 x-2 y-1$ so $x^{2}+y^{2}-6 x+2 y+1=0$,complete the squares
$(x-3)^{2}+(y+1)^{2}=9$ and $\left(\frac{x-3}{3}\right)^{2}+\left(\frac{y+1}{3}\right)^{2}=1$ so
$x=3+3 \cos t, y=-1+3 \sin t, z=6 x-2 y-1=19+18 \cos t-6 \sin t, t \in[0,2 \pi)$
for b)we have two options to find \vec{d} in $(x, y, z)=(0,-1,1)+t \vec{d}$
from part a:
$t=\pi$ for the point $P=\vec{r}(\pi)$ and $\vec{d}=\vec{r}^{\prime}(\pi)=(0,-3,6)$ or $(0,1,-2)$
since $\vec{r}^{\prime}(t)=(-3 \sin t, 3 \cos t,-18 \sin t-6 \cos t)$
OR
$\vec{d}=\overrightarrow{n_{1}} \times \overrightarrow{n_{2}}$ where $\overrightarrow{n_{1}}=\nabla F=(2 x, 2 y,-1)$ then at $P \quad \overrightarrow{n_{1}}=(0,-2,-1)$
where $F(x, y, z)=x^{2}+y^{2}-z=0$ and $G(x, y, z)=6 x-2 y-z=1$
and $\quad \overrightarrow{n_{2}}=\nabla G=(6,-2,-1) \quad \overrightarrow{n_{1}} \times \overrightarrow{n_{2}}=(0,6,-12)=6(0,1,-2)$
so $(x, y, z)=(0,-1,1)+t(0,1,-2)$.
for $\mathbf{c})$ for $P \quad t=\pi$ and for $R \quad t=\frac{\pi}{2}$, also
$\left\|\vec{r}^{\prime}(t)\right\|=\sqrt{9+36(3 \sin t+\cos t)^{2}}=\sqrt{45+36\left(8 \sin ^{2} t+6 \sin t \cos t\right)}$
so $\quad s=\int_{\frac{\pi}{2}}^{\pi} \sqrt{45+72\left(4 \sin ^{2} t+3 \sin t \cos t\right)} d t$.
5. the equation $z=f(1,-1)+\nabla f(1,-1) \bullet(x-1, y+1)=1-(x-1)$ gives
$z=1-(x-1)=2-x$
since for $f(x, y)=e^{y x^{2} \ln x} \quad f(1,-1)=1$,
$f_{x}(x, y)=e^{y x^{2} \ln x}(2 x y \ln x+y x) \quad f_{x}(1,-1)=-1$
$f_{y}(x, y)=e^{y x^{2} \ln x} x^{2} \ln x \quad f_{y}(1,-1)=0$
OR
$\vec{n}=(\nabla f(1,-1),-1)=(-1,0-1)$ and the point is $(1,-1, f(1,-1))=(1,-1,1)$
so $-x-z=d$ and through $P(1,-1,1) \quad x+z=2$.
6. for a) at the origin we have to use the definition:
$f_{x}(0,0)=\lim _{x \rightarrow 0} \frac{f(x, 0)-f(0,0)}{x}=\lim _{x \rightarrow 0} \frac{1-0}{x}=\lim _{x \rightarrow 0^{ \pm}} \frac{1}{x} \quad D N E(\pm \infty)$
$f_{y}(0,0)=\lim _{y \rightarrow 0} \frac{f(0, y)-f(0,0)}{y}=\lim _{y \rightarrow 0} \frac{0-0}{y}=0$
thus the gradient does not exist at $(0,0)$.
for b) since $f(x, x)=\frac{1}{4}$ for any $x \neq 0 \lim _{(x, y) \rightarrow(0,0)} f(x, y) \neq 0=f(0,0)$ the function is discont. at $(0,0)$.
7.

for the domain $\frac{x}{y}>0$ both positive OR both negative
so the domain consists of the first and third quadrants without the axes
for level curves for any c
$c=\ln \frac{x}{y}, e^{c}=\frac{x}{y}, y=e^{-c} x \quad$ lines through the origin
without the origin and with positive slopes $m=e^{-c}=1, e, \frac{1}{e}$
since we got a level curve for any c the range is $z \in(-\infty, \infty)$.
8. $\nabla f=\left(2 x e^{-y},-e^{-y}\left(x^{2}+\cos z\right),-e^{-y} \sin z\right)$ all partials are cont.functions so $D_{v} f=\nabla f \bullet \boldsymbol{v}$ where $\nabla f(A)=(4,-3,0)$
\boldsymbol{v} is the unit vector in the direction of $\overrightarrow{A B}=(-3,-1,-\pi)$
and $\|\overrightarrow{A B}\|=\sqrt{10+\pi^{2}}$ and finally
$D_{v} f(A)=\frac{1}{\sqrt{10+\pi^{2}}}(4,-3,0) \bullet(-3,-1,-\pi)=\frac{-9}{\sqrt{10+\pi^{2}}}$.
9. Since $x=u v^{2}, y=\frac{u}{v}$. for $u=2, v=-1$
$x=2 \quad y=-2$ so we need $f_{x}(2,-2)=3, f_{y}(2,-2)=-2$
$\frac{\partial F}{\partial u}(u, v)=\nabla f(x, y) \bullet\left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}\right)=\left(f_{x}, f_{y}\right) \bullet\left(v^{2}, \frac{1}{v}\right)$
and $\frac{\partial F}{\partial u}(2,-1)=(3,-2) \bullet(1,-1)=5$.
10. for $\mathbf{a})$
for $T=0 \quad y^{2}-3 x^{2}=0 \quad y= \pm x \sqrt{3} \quad$ two lines
for $T=3 \quad y^{2}-3 x^{2}=3 \quad$ hyperbola with intercepts $y= \pm \sqrt{3}, x=0$
for $T=6 \quad y^{2}-3 x^{2}=-6 \quad$ hyperbola with intercepts $x= \pm \sqrt{2}, y=0$
for b)
the direction is $-\nabla T(-1,2)$
so first $\nabla T=(-6 x, 2 y)$ then $\nabla T(-1,2)=(6,4)=2(3,2)$ so $\mathbf{u}=\frac{-1}{\sqrt{13}}(3,2)$.
for \mathbf{c})
the direction must be perpendicular to $\nabla T(-1,2)=2(3,2)$
so $\mathbf{u}=\frac{ \pm 1}{\sqrt{13}}(2,-3)$
11. Define $F_{1}(x, y, z)=x y^{2}-z+u^{2}, F_{2}(x, y, z)=x^{3} z+2 y-u$
$F_{3}(x, y, z)=x u+y-x y z$
since all partials are continuous function the only condition is that
$\left\|\frac{\partial\left(F_{1}, F_{2}, F_{3}\right)}{\partial(x, y, z)}\right\|=\operatorname{det}\left[\begin{array}{lll}\frac{\partial F_{1}}{\partial x} & \frac{\partial F_{1}}{\partial y} & \frac{\partial F_{1}}{\partial z} \\ \frac{\partial F_{2}}{\partial x} & \frac{\partial F_{2}}{\partial y} & \frac{\partial F_{2}}{\partial z} \\ \frac{\partial F_{3}}{\partial x} & \frac{\partial F_{3}}{\partial y} & \frac{\partial F_{3}}{\partial z}\end{array}\right] \neq 0$ at the given point
so det $\left[\begin{array}{ccc}y^{2} & 2 x y & -1 \\ 3 x^{2} z & 2 & x^{3} \\ u-y z & 1-x z & -x y\end{array}\right]$ at the given point $=\operatorname{det}\left[\begin{array}{ccc}1 & 2 & -1 \\ -3 & 2 & 1 \\ 2 & 2 & -1\end{array}\right]=$
along the first column
$=1 \cdot \operatorname{det}\left[\begin{array}{cc}2 & 1 \\ 2 & -1\end{array}\right]-(-3) \cdot \operatorname{det}\left[\begin{array}{cc}2 & -1 \\ 2 & -1\end{array}\right]+2 \cdot \operatorname{det}\left[\begin{array}{cc}2 & -1 \\ 2 & 1\end{array}\right]=-4+0+8=4 \neq 0$.
12. For $\quad f(x, y)=\ln (y \cos x) x=0, y=1$
$T_{2}(x, y)=f(0,1)+\nabla f(0,1) \bullet(x, y-1)+\frac{1}{2}\left[A x^{2}+2 B x(y-1)+C(y-1)^{2}\right]$
where $\quad f(0,1)=\ln 1=0 \quad$ since $f(x, y)=\ln y+\ln \cos x$ for $y>0, \cos x>0$
$f_{x}=\frac{-\sin x}{\cos x}=-\tan x \quad f_{y}=\frac{1}{y} \quad \nabla f(0,1)=(0,1)$
$f_{x x}=-\sec ^{2} x=\frac{-1}{\cos ^{2} x} \quad f_{x y}=0 \quad f_{y y}=-\frac{1}{y^{2}}$
and $\quad A=f_{x x}(0,1)=-1, B=f_{x y}=0 \quad C=f_{y y}(0,1)=-1$
thus
$T_{2}(x, y)=0+(0,1) \bullet(x, y-1)+\frac{1}{2}\left[-x^{2}+0 x(y-1)-(y-1)^{2}\right]=$ $=y-1-\frac{x^{2}}{2}-\frac{(y-1)^{2}}{2}$.
13. Define $F(x, y, z)=\arcsin (z y)+z^{3} x+x^{2} y+8$ for $\quad-1 \leq z y \leq 1, x$ any then $\frac{\partial F}{\partial x}=z^{3}+2 x y \quad \frac{\partial F}{\partial y}=\frac{z}{\sqrt{1-z^{2} y^{2}}}+x^{2}$ and $\frac{\partial F}{\partial z}=\frac{y}{\sqrt{1-z^{2} y^{2}}}+3 z^{2} x$ for $-1<z y<1, x$ any
all functions are cont. at the point $P(-1,0,2)$ and $\frac{\partial F}{\partial z}(P)=-12 \neq 0$ so the equation can be solved for z as a function of x, y around he point $P(-1,0,2)$
then $\frac{\partial z}{\partial x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}=-\frac{2 x y+z^{3}}{\frac{y}{\sqrt{1-z^{2} y^{2}}}+3 z^{2} x}=\frac{-8}{-12}=\frac{2}{3}$ at P and
$\frac{\partial z}{\partial y}=-\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}=-\frac{\frac{z}{\sqrt{1-z^{2} y^{2}}}+x^{2}}{\frac{y}{\sqrt{1-z^{2} y^{2}}}+3 z^{2} x}=-\frac{3}{-12}=\frac{1}{4}$ at that point..

