MATH 349

Handout \# 1-solution

A

FOR 1)

For $a_{n}=\frac{e^{n}}{1+3^{n}}$ we can estimate: $0<a_{n}<\frac{e^{n}}{3^{n}}=\left(\frac{e}{3}\right)^{n}$
by a geometric sequence with $r=\frac{e}{3}<1$ so the limit is 0 and
by Squeeze theorem also $\lim a_{n}=0$.
Back to the estimate : $0<a_{n}<1$ so a lower bound is 0 and an upper bound is 1 we can use L'Hopital Rule for the limit as $x \rightarrow \infty$:
$\lim _{x \rightarrow \infty} \frac{e^{x}}{1+3^{x}}=\lim _{x \rightarrow \infty} \frac{e^{x}}{3^{x} \cdot \ln 3}=\frac{1}{\ln 3} \lim _{x \rightarrow \infty} e^{x(1-\ln 3)}=" e^{-\infty "}=0$ since $\ln 3>1$.

FOR 2)

Let's call the sequence $x_{n}=\frac{2^{n}}{n!}$
then $0<\frac{x_{n+1}}{x_{n}}=\frac{2^{n+1}}{(n+1)!} \cdot \frac{n!}{2^{n}}=\frac{2}{n+1}<1$ thus
$0<x_{n+1}<x_{n}$ for all $n>1$ so $0<x_{n}<x_{1}=2$
therefore the sequence is bounded and decreasing. Thus the limit exists.
To find it estimate $x_{n}=\frac{2 \cdot 2 \cdot \ldots \cdot \cdot 2 \cdot 2}{n(n-1) \ldots \cdot 2 \cdot 1} \leq \frac{2}{n} \cdot 1 . . \cdot 2=\frac{4}{n}$ for $n>2$
so by Squ.Th. the limit is 0 .

FOR 3)

for a) $\{1,2,1,3,1,4,1 \ldots .1, n, 1 \ldots\}$ or $\left\{n+(-1)^{n}\right\}_{n=1}^{\infty}$ or $\left\{(-1)^{n} n\right\}_{n=1}^{\infty}$
for b) $\left\{(-1)^{n}\right\}$ or $\{1,2,1,2,1 \ldots\}$

B

FOR 1)

For $a_{n}=\frac{n!}{n^{n}}$ we can estimate:
$0<\frac{a_{n+1}}{a_{n}}=\frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^{n}}{n!}=\frac{n+1}{n+1}\left(\frac{n}{n+1}\right)^{n}<1$
thus $a_{n+1}<a_{n}$ so the sequence is decreasing
and $0<a_{n}<a_{1}=1$ for all $n>1$ so the sequence is bounded
for the limit estimate $0<a_{n}=\frac{n!}{n^{n}}=\frac{n(n-1) \ldots 2 \cdot 1}{n \cdot n \cdot \ldots n \cdot n} \leq \frac{1}{n}$
so the limit is 0 by Squ.Th.

FOR 2)

For $a_{n}=\sqrt{n^{2}-\frac{n}{3}}-n$ the type of the limit is " $\infty-\infty$ " so rationalize
to change it to the type $" \frac{\infty}{\infty}$ ",
then divide both the top and bottom by the highest power in the denominator:

$$
\begin{aligned}
& \left(\sqrt{n^{2}-\frac{n}{3}}-n\right) \cdot \frac{\sqrt{n^{2}-\frac{n}{3}}+n}{\sqrt{n^{2}-\frac{n}{3}}+n}=\frac{n^{2}-\frac{n}{3}-n^{2}}{\sqrt{n^{2}-\frac{n}{3}}+n}=\frac{-\frac{n}{3}}{\sqrt{n^{2}-\frac{n}{3}}+n} \cdot \frac{\frac{1}{n}}{\frac{1}{n}}= \\
& \left(\operatorname{using} \frac{1}{n}=\frac{1}{\sqrt{n^{2}}}\right)=\frac{-\frac{1}{3}}{\sqrt{1-\frac{1}{3 n}}+1}=\frac{-\frac{1}{3}}{2} \longrightarrow-\frac{1}{6}
\end{aligned}
$$

Since the sequence is convergent it must be bounded.From the last simplification
$a_{n}=\frac{-\frac{1}{3}}{\sqrt{1-\frac{1}{3 n}}+1}$ so $a_{n}<0 \quad$ upper bound, and $\sqrt{1-\frac{1}{3 n}}+1 \geq 1$
$($ since $\sqrt{\cdots}$ is always $\geq 0) \quad \frac{1}{\sqrt{1-\frac{1}{3 n}}+1} \leq 1$
thus $a_{n} \geq-\frac{1}{3} \quad$ lower bound. Together $\quad-\frac{1}{3} \leq a_{n}<0$.
FOR 3) for a) $\left\{-\frac{1}{n}\right\}_{n=1}^{\infty}=\left\{-1,-\frac{1}{2},-\frac{1}{3}, \ldots\right\}$

$$
\text { for b) }\left\{(-1)^{n} n\right\}_{n=1}^{\infty}=\{-1,2,-3,4,-5, \ldots\}
$$

C
FOR 1).
For $a_{n}=\frac{n+(-1)^{n}}{n} \quad a_{1}=0, a_{2}=\frac{3}{2}, a_{3}=\frac{2}{3}, a_{4}=\frac{5}{4} \ldots$,
also $a_{n}=1+\frac{n}{n} \frac{(-1)^{n}}{n}$, all terms positive except the first one,so not alternating, but convergent since $\left|\frac{(-1)^{n}}{n}\right| \leq \frac{1}{n}$ and the limit of $\frac{1}{n}$ is 0 .
So $\lim _{n \rightarrow \infty} a_{n}=1$. Thus the sequence must be bounded $0 \leq a_{n} \leq 1+\frac{1}{n} \leq \frac{3}{2}$.
Now ,for even $n: a_{n}=1+\frac{(-1)^{n}}{n}=1+\frac{1}{n}>1$
and for odd $n: a_{n}=1+\frac{(-1)^{n}}{n}=1-\frac{1}{n}<1$ so the sequence is not monotonic.

FOR 2)

to find the limit of $a_{n}=\frac{4^{n}}{2^{n}+10}$ divide by 2^{n} the top and bottom
$a_{n}=\frac{\frac{4^{n}}{2^{n}}}{1+\frac{10}{2^{n}}}=\frac{2^{n}}{1+\frac{10}{2^{n}}} \rightarrow \frac{\infty}{1+0}=+\infty$
Also $\lim \frac{4^{x}}{2^{x}+10}=" \frac{\infty}{\infty} "\left(L^{\prime} H\right)=\lim \frac{4^{x} \ln 4}{2^{x} \ln 2}=\lim 2^{x} \cdot \frac{\ln 4}{\ln 2}=+\infty$ as $x \rightarrow+\infty$
also the sequence is increasing since $a_{n}<a_{n+1}$

$$
\frac{4^{n}}{2^{n}+10}<\frac{4^{n+1}}{2^{n+1}+10} \quad 2^{n+1}+10<4 \cdot 2^{n}+40 \quad 0<2^{n+1}+30
$$

FOR 3).

Give an example of a sequence which is divergent and bounded.
$\{1,2,1,2, \ldots\}$ or $\left\{(-1)^{n}\right\}$
or any mixture of two convergent therefore bounded sequences:
$a_{n}=\frac{1}{n}$ for n odd and $a_{n}=\frac{n}{n+1}$ for n even i.e. $\left\{1, \frac{2}{3}, \frac{1}{3}, \frac{4}{5}, \frac{1}{5}, \frac{6}{7}\right\}$
so odd terms have limit 0 , but even terms have limit 1 ,
so the whole sequence has NO limit.

D

FOR 1)

$\lim _{n \rightarrow \infty} a_{n}=\lim _{x \rightarrow \infty}\left(x-2^{x}\right)=" \infty-\infty "$
so we have to compare, but we know that exp.function is stronger than any polynomial so limit is $-\infty$, to prove it:
$\lim _{x \rightarrow \infty} 2^{x} \cdot\left(\frac{x}{2^{x}}-1\right)=\left(\lim _{x \rightarrow \infty} 2^{x}\right)(L-1)$,
where $L=\lim _{x \rightarrow \infty} \frac{x}{2^{x}}$ and we can use L'Hopital Rule since the type is " $\frac{\infty}{\infty}$ ",so
$L=\lim _{x \rightarrow \infty} \frac{1}{2^{x} \cdot \ln 2}=0$ since $\frac{1}{\infty}=0$. Together $\lim _{n \rightarrow \infty} a_{n}=+\infty \cdot(-1)=-\infty$.
So the sequence is divergent and not bounded below.Is it bounded above?
Investigate: $a_{1}=-1, a_{2}=-3$, all terms are negative so an upper bound is 0 ,
to see it compare the graphs $y=x$ and $y=2^{x}$, the line is always below exp.function Also $a_{n} \leq a_{1}=-1$ since the sequence is decreasing: $a_{n+1}<a_{n}$ proof: $n+1-2^{n+1}<n-2^{n} \quad 1<2^{n}(2-1) \quad 1<2 \leq 2^{n}$ for all n.
FOR 2). For $b_{n}=(n+1)^{\frac{1}{n}} \quad b_{n}=f(n)$, where $f(x)=e^{\frac{1}{x} \ln (x+1)}$.
Calculate the limit of the exponent first:
$L=\lim _{x \rightarrow \infty} \frac{\ln (x+1)}{x}=" \frac{\infty}{\infty} " L^{\prime} H=\lim _{x \rightarrow \infty} \frac{\frac{1}{x+1}}{1}=0$, so $\lim _{n \rightarrow \infty} b_{n}=e^{0}=1$
for monotonicity: $\quad f^{\prime}(x)=e^{\frac{1}{x} \ln (x+1)}\left[\frac{\frac{x}{x+1}-\ln (x+1)}{x^{2}}\right]<0$
since $\frac{x}{x+1}-\ln (x+1)=\frac{x+1-1}{x+1}-\ln (x+1)=1-\frac{1}{x+1}-\ln (x+1)<0$
if $1<\ln (x+1)$ which is true for sure for $x \geq 2$
thus the sequence is decreasing;
also by definition $b_{n+1}<b_{n} \quad(n+2)^{\frac{1}{n+1}}<(n+1)^{\frac{1}{n}}$
$(n+2)^{n}<(n+1)^{n+1} \quad\left(\frac{n+2}{n+1}\right)^{n}<n+1$
$\left(1+\frac{1}{n+1}\right)^{n}<n+1$ using the binomial formula
$\sum_{k=0}^{k=n}\binom{n}{k}\left(\frac{1}{n+1}\right)^{k}=\sum_{k=0}^{k=n} \frac{1}{k!} \cdot \frac{n(n-1) . .(n-k+1)}{(n+1)(n+1) \ldots . .(n+1)}<\sum_{k=0}^{k=n} 1=n+1$

FOR 3)

For a) the sequence must be convergent e.g. $a_{n}=1-\frac{1}{n}$
and it is increasing since $\left\{\frac{1}{n}\right\}$ is decreasing
For b) $a_{n}=3+(-1)^{n} \frac{1}{n} \quad$ since $\frac{1}{n} \rightarrow 0$, and also
the alternating sequence $\frac{(-1)^{n}}{n} \rightarrow 0$ by Squeeze Theorem

