MATH 349

Handout \# 2-Solutions.

1. the series $\sum_{n=1}^{\infty} \frac{3^{n} \ln n}{n^{n}}$

By Ratio test: $0<\frac{a_{n+1}}{a_{n}}=\frac{3^{n+1} \ln (n+1)}{(n+1)^{n+1}} \cdot \frac{n^{n}}{3^{n} \ln n}=\frac{\ln (n+1)}{\ln n} \cdot \frac{3}{n+1} \cdot\left(\frac{n}{n+1}\right)^{n}$,
$\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1 \cdot 0 \cdot \frac{1}{e}=0<1$, the series is convergent
(using $\lim _{x \rightarrow \infty} \frac{\ln (x+1)}{\ln x}=1$ by L'H Rule, and $\lim _{n \rightarrow \infty}\left(1-\frac{1}{n+1}\right)^{n}=e^{-1}$).
2. In a) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}} ;$ since $a_{n}=\frac{1}{n(\ln n)^{2}}>0$ for $n \geq 2$ we can use Integral Test.

The function $f(x)=\frac{1}{x(\ln x)^{2}}$ is continous, positive and decreasing for any $x \geq 2$ because it is reciprocal of a positive,continous and increasing function(product of 2 incr.pos. funct-s)
Now, $\int \frac{1}{x(\ln x)^{2}} d x=-\frac{1}{\ln x}$, using substitution $u=\ln x, d u=\frac{1}{x} d x$,
then $\int_{2}^{\infty} \frac{1}{x(\ln x)^{2}} d x=-\lim _{x \rightarrow \infty} \frac{1}{\ln x}+\frac{1}{\ln 2}=0+\frac{1}{\ln 2}=\frac{1}{\ln 2}$. Therefore the series is convergent.
In b) $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{2}}$ In this case the integral is difficult ; try Comparison test: $\frac{1}{2} \ln n=\ln \sqrt{n}<\sqrt{n}$ for any $n \geq 2$,
so $\ln n<2 \sqrt{n}$ and $0<(\ln n)^{2}<4 n, \frac{1}{(\ln n)^{2}}>\frac{1}{4 n}$ and harmonic series is divergent so the given series is divergent.
3. $\sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{1}{n}$

For $n \geq 1, \frac{1}{n} \leq 1$ and $0<\sin \frac{1}{n}<\frac{1}{n}$ since $\sin x<x$ for $x>0$.
By Comparison Test $0<\frac{1}{n} \sin \frac{1}{n}<\frac{1}{n^{2}}$ and $p=2$ so $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent and $\sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{1}{n}$ is also convergent.
4. $\sum_{n=1}^{\infty} \frac{(2 n)!}{n!n^{n}}$ is divergent by Ratio Test :

$$
\begin{aligned}
& 0<\frac{a_{n+1}}{a_{n}}=\frac{(2 n+2)!}{(n+1)!(n+1)^{n+1}} \cdot \frac{n!n^{n}}{(2 n)!}=\frac{(2 n+2)(2 n+1)(2 n)!}{(n+1) n!(n+1)(n+1)^{n}} \cdot \frac{n!n^{n}}{(2 n)!}= \\
& =\frac{2(n+1)(2 n+1)}{(n+1)(n+1)} \cdot\left(\frac{n}{n+1}\right)^{n}=\frac{2(2 n+1)}{n+1}\left(1-\frac{1}{n+1}\right)^{n} \rightarrow 2 \cdot 2 \cdot e^{-1}=\frac{4}{e}>1
\end{aligned}
$$

5. $\sum_{n=1}^{\infty} \frac{e^{n} \cos ^{2} n}{\pi^{n}-1}$

Since $0<\cos ^{2} n<1,0<\frac{e^{n} \cos ^{2} n}{\pi^{n}-1} \leq \frac{e^{n}}{\pi^{n}-1}=a_{n}$, but this sequence is equivalent to the geometric sequence $b_{n}=\frac{e^{n}}{\pi^{n}}$, where $r=\frac{e}{\pi}<1$
since $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{e^{n}}{\pi^{n}-1} \cdot \frac{\pi^{n}}{e^{n}}=\lim _{n \rightarrow \infty} \frac{1}{1-\frac{1}{\pi^{n}}}=1 \neq 0$
By Limit Comparison Test $\sum_{n=1}^{\infty} a_{n}$ is convergent
and by Comparison Test the original series is convergent.
6. Find the sum of $\sum_{n=2}^{\infty} \frac{1}{e^{\frac{n}{2}}}$
the series is a geometric one where $r=\frac{1}{\sqrt{e}}<1$ so the series is convergent and
$\sum_{n=2}^{\infty}\left(\frac{1}{e^{\frac{1}{2}}}\right)^{n}=\frac{\left(\frac{1}{\sqrt{e}}\right)^{2}}{1-\frac{1}{\sqrt{e}}}=\frac{1}{e} \cdot \frac{\sqrt{e}}{\sqrt{e}-1}=\frac{1}{\sqrt{e}(\sqrt{e}-1)}$
using $\sum_{n=N}^{\infty} r^{n}=\frac{r^{N}}{1-r}$ for any $-1<r<1$.
7. the series $\sum_{n=1}^{\infty} \frac{2+\cos n}{\sqrt{n}+n}$ has positive terms and $1 \leq 2+\cos n \leq 3$

Also $\quad 2 \cdot \sqrt{n} \leq \sqrt{n}+n \leq 2 n$
so $\frac{1}{2 n} \leq \frac{2+\cos n}{\sqrt{n}+n} \leq \frac{3}{2 \sqrt{n}}$ and we can use the left part of the inequality and Comparison test.Since $\sum_{n=1}^{\infty} \frac{1}{2 n}$ is divergent
(a half of the harmonic series) and our series is bigger thus also divergent.
8. the series $\sum_{n=1}^{\infty} \frac{5^{n}}{n^{n+1}}$ has positive terms so we can try Ratio or Root test
$\frac{a_{n+1}}{a_{n}}=\frac{5^{n+1}}{(n+1)^{n+2}} \cdot \frac{(n)^{n+1}}{5^{n}}=\frac{5}{(n+1)} \cdot\left(\frac{n}{n+1}\right)^{n+1}=\frac{5}{n+1} \cdot\left(1-\frac{1}{n+1}\right)^{n+1} \rightarrow$
$0 \cdot e^{-1}=0$
as $n \rightarrow \infty$. Since the limit $\rho=0<1$ the series is convergent.
Root test is easier
$\left(a_{n}\right)^{\frac{1}{n}}=\left(\frac{5^{n}}{n^{n+1}}\right)^{\frac{1}{n}}=\frac{5}{n^{1+\frac{1}{n}}} \rightarrow \frac{5}{\infty}=0$ as $n \rightarrow \infty$ since $\lim _{n \rightarrow \infty} n^{\frac{1}{n}}=1$
Since the limit $\sigma=0<1$ the series is convergent.
9. Find the sum of $\sum_{n=1}^{\infty} \frac{5+2^{n}}{5^{n+2}}$. We can split the series into two convergent ones:
$\sum_{n=1}^{\infty} \frac{5+2^{n}}{5^{n+2}}=\sum_{n=1}^{\infty} \frac{5}{5^{n+2}}+\sum_{n=1}^{\infty} \frac{2^{n}}{5^{n+2}}=\frac{1}{5} \sum_{n=1}^{\infty} \frac{1}{5^{n}}+\frac{1}{5^{2}} \sum_{n=1}^{\infty} \frac{2^{n}}{5^{n}}$ both are convergent geometric series with $r=\frac{1}{5}$ and $r=\frac{2}{5}$ so the original series is covergent and the sum
$s=\frac{1}{5} \cdot \frac{\frac{1}{5}}{1-\frac{1}{5}}+\frac{1}{25} \cdot \frac{\frac{2}{5}}{1-\frac{2}{5}}=\frac{1}{20}+\frac{2}{75}=\frac{23}{300}$
using $\sum_{n=N}^{\infty} r^{n}=\frac{r^{N}}{1-r}$ for any $-1<r<1$.
10. the series $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ has positive terms for $n \geq 2$ the function $f(x)=\frac{\ln x}{x}$ is positive and continuous on $[2, \infty)$, since $f^{\prime}(x)=\frac{\frac{1}{x} \cdot x-\ln x}{x^{2}}=\frac{1-\ln x}{x^{2}}<0$ for $x>e$ since $\ln x>\ln e=1$, so the function is decreasing on $[3, \infty)$ and we can use Integral test :
$\sum_{n=3}^{\infty} \frac{\ln n}{n}$ is divergent since the integral (by subst. $u=\ln x, d u=\frac{d x}{x}$)
$\int_{3}^{\infty} \frac{\ln x}{x} d x=\int_{\ln 3}^{\infty} u d u=\left[\frac{u^{2}}{2}\right]_{\ln 3}^{\infty}=\infty$.
11. the series $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!}$ has positive terms so we can try Ratio test:
$\frac{a_{n+1}}{a_{n}}=\frac{[(n+1)!]^{2}}{(2 n+2)!} \cdot \frac{(2 n)!}{(n!)^{2}}=\frac{(n+1)^{2} \cdot(n!)^{2}}{(2 n+2)(2 n+1)(2 n)!} \cdot \frac{(2 n)!}{(n!)^{2}}=\frac{n^{2}+2 n+1}{4 n^{2}+6 n+2} \rightarrow \frac{1}{4}$
as $n \rightarrow \infty$ (divide the top and bottom by n^{2}). Since the limit $\rho=\frac{1}{4}<1$ the series is convergent.

