## MATH 349

Handout \#4

1. For $f(x, y)=\sqrt{2 x+y^{2}} \quad$ find the range; sketch the domain;
sketch the level curves for $c=0,-1,2$;
and show that $y f_{x}=f_{y}$ in the domain ( $f_{x}, f_{y}$ are partial derivatives).
2. Find $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}}{x^{2}+2 y^{2}}$,if it exists.
3. For $f(x, y)=\frac{e^{y}}{x}$
(a) sketch the domain and level curves for $c=0, \pm 1, e$ in the xy-plane
(b) find the second mixed partial derivative $f_{x y}$.
4. Show that $f(x, y)=\frac{1}{\sqrt{y x^{2}+y^{2}+\frac{1}{4} x^{4}}}$ satisfies the equation $f_{x}=x f_{y}$ in the domain - find it!
5. For $f(x, y)=\ln \left(x^{2}+y^{2}+x\right) \quad$ find the range; sketch the domain of $f$; and sketch the level curves of $f$ for $c=0,1, \ln 2,-\ln 2, \ldots$.
6. Find $\lim \frac{x y+y}{(x+1)^{2}+y^{2}}$ as $(x, y) \rightarrow(-1,0)$ if it exists.
7. For $f(x, y)=\arctan \frac{x}{y}$ show that $y \cdot f_{x}-x \cdot f_{y}=1$ for any $x$ and $y \neq 0$. ( $f_{x}$ and $f_{y}$ denote partial derivatives with respect to $x$ and $y$ respectively)
8. For $f(x, y)=\frac{2 x}{x^{2}+y} \quad$ sketch the domain of $f$;
sketch tn the xy-plane the level curves for $c=0,-2,1$; and find an equation of the tangent plane to $z=f(x, y)$ at $x=-1, y=1$.
9. Find $\lim _{(x, y) \rightarrow(0,1)} \frac{x y-x}{3 x^{2}+2(y-1)^{4}} \quad$,if it exists.
