$\begin{array}{c} {\rm MATH~349} \\ {\rm Handout~\#4} \end{array}$

- 1. For $f(x,y) = \sqrt{2x + y^2}$ find the range; sketch the domain; sketch the level curves for c = 0, -1, 2; and show that $y \ f_x = f_y$ in the domain (f_x, f_y are partial derivatives).
- 2. Find $\lim_{(x,y)\to(0,0)} \frac{x^3}{x^2+2y^2}$, if it exists.
- 3. For $f(x,y) = \frac{e^y}{x}$
 - (a) sketch the domain and level curves for $c = 0, \pm 1, e$ in the xy-plane
 - (b) find the second mixed partial derivative f_{xy} .
- 4. Show that $f(x,y) = \frac{1}{\sqrt{yx^2 + y^2 + \frac{1}{4}x^4}}$ satisfies the equation $f_x = xf_y$ in the domain find it!
- 5. For $f(x,y) = \ln(x^2 + y^2 + x)$ find the range; sketch the domain of f; and sketch the level curves of f for $c = 0, 1, \ln 2, -\ln 2, \dots$
- 6. Find $\lim \frac{xy+y}{(x+1)^2+y^2}$ as $(x,y) \to (-1,0)$ if it exists.
- 7. For $f(x,y) = \arctan \frac{x}{y}$ show that $y \cdot f_x x \cdot f_y = 1$ for any x and $y \neq 0$.

 (f_x and f_y denote partial derivatives with respect to x and y respectively)
- 8. For $f(x,y) = \frac{2x}{x^2 + y}$ sketch the domain of f; sketch to the xy-plane the level curves for c = 0, -2, 1; and find an equation of the tangent plane to z = f(x,y) at x = -1, y = 1.
- 9. Find $\lim_{(x,y)\to(0,1)} \frac{xy-x}{3x^2+2(y-1)^4}$, if it exists.