MATH 349 Handout #4 Solution

For 1) $f(x,y) = \sqrt{2x + y^2}$ for the domain $2x + y^2 \ge 0$ $y^2 \ge -2x$ any x > 0 will do, generally the region right of the parabola $y^2 = -2x$, $x \le 0$ level curves: c = 0 $0 = 2x + y^2$... parabola above; c < 0... NO curves; c > 0... parabolas shifted to the right $y^2 = c^2 - 2x$ ($y = \pm \sqrt{c^2 - 2x}$ the range is $[0, +\infty)$ Partials: $f_x = \frac{2}{2\sqrt{2x+y^2}} = \frac{1}{\sqrt{2x+y^2}}; f_y = \frac{2y}{2\sqrt{2x+y^2}} = \frac{y}{\sqrt{2x+y^2}}$ $y f_x = f_y$ in the domain except on $y^2 = -2x$. obviously For 2) $\lim_{(x,y)\to(0,0)} \frac{x^3}{x^2 + 2y^2} \qquad \text{for } (x,y) \neq (0,0)$ define $g(x,y) = \frac{x^3}{x^2 + 2y^2}$ then g(0,y) = 0 for any $y \neq 0$ and for $x \neq 0$ $g(x,0) = \frac{x^3}{x^2} = x \to 0 \text{ as } x \to 0 \text{ ; along any line } y = mx \text{ for } x \neq 0$ $g(x,mx) = \frac{x^3}{x^2 + 2m^2x^2} = \frac{x}{1+2m^2} \to 0 \text{ as } x \to 0.$ Thus limit could be 0. Now, we have to prove it $|g(x,y) - 0| = \left|\frac{x^3}{x^2 + 2y^2}\right| = |x| \frac{x^2}{x^2 + 2y^2} \le |x| \frac{x^2 + 2y^2}{x^2 + 2y^2} = |x| \to 0$ as $x \to 0$ therefore $\lim_{(x,y)\to(0,0)} \frac{x^3}{x^2 + 2y^2} = 0$ by Squeeze Theorem.

For 3)

For $f(x, y) = \frac{e^y}{x}$ the domain is $x \neq 0$, so $D = \mathbf{R}^2 - \{y - axis\}$ level curves: c = 0, NO curve since $e^y > 0$ always for $c \neq 0$ $cx = e^y$, $\ln cx = y$, for cx > 0, and $y = \ln |x| + \ln |c|$ so for $c = 1, y = \ln x, x > 0$; for $c = -1, y = \ln(-x), x < 0$, and for $c = e, y = \ln x + 1, x > 0$ the range is $(-\infty, 0) \cup (0, +\infty)$

For the derivative $f_x = -\frac{e^y}{x^2}$, and $(f_x)_y = -\frac{e^y}{x^2} = f_{xy}$ since all functions are continuous in D $f_{xy} = f_{yx}$. For 4)

for
$$f(x,y) = \left(yx^2 + y^2 + \frac{1}{4}x^4\right)^{-\frac{1}{2}}$$

using Chain Rule $f_x = -\frac{1}{2}\left(yx^2 + y^2 + \frac{1}{4}x^4\right)^{-\frac{3}{2}} \cdot (2xy + x^3)$ and $f_y = -\frac{1}{2}\left(yx^2 + y^2 + \frac{1}{4}x^4\right)^{-\frac{3}{2}} \cdot (x^2 + 2y)$, so $xf_y = f_x$.
For the domain: $yx^2 + y^2 + \frac{1}{4}x^4 > 0$, $\left(y + \frac{1}{2}x^2\right)^2 > 0$, always except when $y = -\frac{1}{2}x^2$

Also we can simplified using $\sqrt{a^2} = |a|$ $sgn(a) = \frac{|a|}{a}$ for $a \neq 0$ $f(x,y) = \left| y + \frac{1}{2}x^2 \right|^{-1}$, so $f_x = \frac{-x}{(y + \frac{1}{2}x^2)^2} sgn\left(y + \frac{1}{2}x^2\right)^a$, and $f_y = \frac{-1}{(y + \frac{1}{2}x^2)^2} sgn\left(y + \frac{1}{2}x^2\right)$, if $y + \frac{1}{2}x^2 \neq 0$. For 5) For $f(x, y) = \ln(x^2 + y^2 + x)$ for domain solve $:x^2 + y^2 + x > 0$ complete the square: $\left(x + \frac{1}{2}\right)^2 + y^2 > \frac{1}{4}$ so the domain is outside the circle with the centre at $(-\frac{1}{2}, 0)$ and $r = \frac{1}{2}$. For the level curves: $e^c = x^2 + y^2 + x$ so as above : $\left(x + \frac{1}{2}\right)^2 + y^2 = e^c + \frac{1}{4}$ so all are circles with the same centre $\left(-\frac{1}{2},0\right)$ and $r=\sqrt{e^{c}+\frac{1}{4}}$, for any c thus the range is $(-\infty, \infty)$ particularly if c = 0 $r = \frac{\sqrt{5}}{2}; c = \ln 2$ $r = \frac{3}{2};$ $c = -\ln 2 = \ln \frac{1}{2}$ $r = \frac{\sqrt{3}}{2}...$ Notice that cross-section x = 0 $z = 2\ln|y|$ or for y = 0 $z = \ln(x^2 + x)$ For 6) define $g(x,y) = \frac{xy+y}{(x+1)^2+y^2} = \frac{(x+1)y}{(x+1)^2+y^2}$ for $(x,y) \neq (-1,0)$ then $g(-1,y) = \hat{\underline{0}}_{y^2} = 0$ for $y \neq 0$ and g(x,0) = 0 for $x \neq -1$ y = x + 1 through the point (-1, 0)but for the line $g(x, x+1) = \frac{(x+1)^2}{2(x+1)^2} = \frac{1}{2}$ for $x \neq -1$ so the limit DNE. For 7) $f(x,y) = \arctan \frac{x}{y}$ for $y \neq 0$ $f_x = \frac{1}{1 + \left(\frac{x}{2}\right)^2} \cdot \frac{1}{y} = \frac{y}{x^2 + y^2} \text{ and } f_y = \frac{1}{1 + \left(\frac{x}{2}\right)^2} \cdot \frac{-x}{y^2} = \frac{-x}{x^2 + y^2}$ $y f_x - x f_y = \frac{y^2 + x^2}{x^2 + y^2} = 1$ for any x and $y \neq 0$. \mathbf{SO} For 8) For $f(x,y) = \frac{2x}{x^2 + y}$ the domain is $D = \{y \neq -x^2\} \dots xy$ -plane except the parabola $y = -x^2$ level curves $c = 0 \Longrightarrow 2x = 0, x = 0...y$ -axis except the origin for c = 1: $1 = \frac{2x}{x^2 + y}, \quad x^2 + y = 2x, \quad y = -x^2 + 2x = -x(x - 2)$.a parabola open down, vertex V(1,1), roots 0, 2 without the origin for c = -2: $-2 = \frac{2x}{x^2 + y}$, $-2x^2 - 2y = 2x$, y = -x(1+x)a parabola open down ,vertex at $V(-\frac{1}{2},\frac{1}{4})$,roots 0, -1 without the origin general level curves are shifted parabolas open down without the origin,

 $f_x(x,y) = 2 \cdot \frac{x^2 + y - 2x^2}{(x^2 + y)^2} = \frac{2(y - x^2)}{(x^2 + y)^2} \text{ at } x = -1, y = 1 \quad f_x(-1,1) = 0$ $f_y(x,y) = 2x \cdot (-1) (x^2 + y)^{-2} \cdot 1 = \frac{-2x}{(x^2 + y)^2} \text{ at } x = -1, y = 1 \quad f_y(-1,1) = \frac{2}{4} = \frac{1}{2}$ so a normal vector to the tangent plane is $(f_x, f_y, -1) = (0, \frac{1}{2}, -1)$ or $\overrightarrow{n} = (0, 1, -2)$ an equation is y - 2z = dfor d we need the point $z_0 = f(-1, 1) = \frac{-2}{2} = -1 \qquad P(-1, 1, -1)$ and 1 + 2 = 3 = d, so together y - 2z = 3.
For 9)
define $g(x, y) = \frac{x(y - 1)}{3x^2 + 2(y - 1)^4}$ for $(x, y) \neq (0, 1)$ then for $y \neq 1 \quad g(0, y) = 0$ and for $x \neq 0 \quad g(x, 1) = 0$,
try a line through that point $u = 1 = mx \quad m \neq 0$

 $for x \neq 0 \quad f(x, mx + 1) = \frac{mx^2}{3x^2 + 2m^4x^4} = \frac{m}{3 + 2m^4x^2} \rightarrow \frac{m}{3} \neq 0$ for any $m \neq 0$ (as $x \rightarrow 0$) Therefore the limit DNE.



