
The University of Calgary
Department of Mathematics and Statistics

MATH 349 Handout # 5

Solutions For 1 a)
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For 1b)

for x=cos (�st) y = sin
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for s = 0 and t = �1 x = cos (0) = 1; y = sin 0 = 0
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OR by Chain Rule Dh = DfDg matrix multiplication where
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For 2)
for f(x; y) = ln (x+ y2) and x0 = 0; y0 = �1 z0 = f(0;�1) = ln 1 = 0
partials fx =

1

x+ y2
fy =

2y

x+ y2
and A = fx(0;�1) = 1; B = fy(0;�1) = �2

so tangent plane z = z0 + A(x� x0) +B(y � y0)
z = 0 + (x� 0)� 2 (y + 1) z = x� 2y � 2
Or the point on the graph is P (0;�1; 0) and n =(rf;�1) = (1;�2;�1)
so x� 2y � z = d and from P 0 + 2� 0 = d thus x� 2y � z = 2.
For 3)

for f(x; y) = e
p

y
x the domain of f is y

x
� 0 i.e.fy � 0; x > 0g [ fy � 0; x < 0g

but the domain of the partials is .fy > 0; x > 0g [ fy < 0; x < 0g = fxy > 0g
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; for xy > 0

the middle steps are true only if both x; y are positive
but the �nal expresions are valid even if both are negative.

for z > 0 rf = gradf = (fx; fy; fz) where
fx =

p
2 cos(�xy + x ln z) [�y + ln z] fy =

p
2 cos(�xy + x ln z) [�x]

fz =
p
2 cos(�xy + x ln z)

h
x
z

i
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p
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�
�y + ln z; �x;
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For 4b)
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For 4c)
if t = 2 then x = 1

2
; y = �1
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and z = 1
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and by Chain Rule
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For 5)

Simplify the function �rst f(x; y) = ln
x2 + y2

xy
= ln

�
x2 + y2

�
� lnx� ln y

for x > 0; y > 0 so

partials are fx =
2x

x2 + y2
� 1

x
fy =
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x2 + y2
� 1
y

and fx(2; 1) =
4
5
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fy(2; 1) =

2

5
� 1 = �3
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Now, rate of change means the directional derivative
Since partials are continuous in the domain
D�f(2; 1) = rf(2; 1) � (�1; �2) =

�
3
10
;�3
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�
� (�1; �2) = 3

10
(�1 � 2�2)

and we are looking for a unit vector (�1; �2) such that
D�f(2; 1) =

3
10

3
10
(�1 � 2�2) = 3
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and �21 + �

2
2 = 1

so �1 � 2�2 = 1;one solution is �1 = 1; �2 = 0;
generally �1 = 1 + 2�2 =) �21 + �

2
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2 + 4�2 + 1 = 1;
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�2 (5�2 + 4) = 0 thus another solution is �2 = �4
5
and �1 = 1� 8

5
= �3
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Together � = (1; 0) or � = 1
5
(�3;�4)

Maximum rate is always equal to krfk =
� 310 ;�35

� = 3
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p
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3
p
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For 6)
rf = (fx; fy; fz) = (2xzey + z2; x2zey; x2ey + 2xz) at P
rf(P ) = (12; 4; 6) = 2 (6; 2; 3; ) krfk = 2

p
49 = 14

the direction is u = � rf
krfk = �

1

7
(6; 2; 3) and rate is krfk = �14:

For 7a)

lim
(x;y)!(0;0)

xy

2x2 + y2
does not exists,for sure it is NOT equal to 0

since for x 6= 0 f(x; x) =
1

3
so f is discontinous at (0; 0) ;

For 7b)

by de�nition fx (0; 0) = lim
x!0

f(x; 0)� 0
x

= 0

fy (0; 0) = lim
y!0

f(0; y)� 0
y

= 0 so the gradient exists and rf (0; 0) = (0; 0) :
For 7c)
for the directional derivative we have to use the de�nition
since f is discont.at (0; 0) thus partials cannot be cont.at(0; 0)

unit vector in the direction of the line y = x x = t; y = t is u =

 
1p
2
;
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Duf(0; 0) =
1p
2
lim
t!0

f(t; t)� 0
t
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1

2
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� t

2

3t2
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t!0

1

3t
does not exists

OR from a)

since f(x; x) =
1

3
for x 6= 0 and f(0; 0) = 0 f is not continous along that line

so it cannot be di�erentiable along that line.
For 7d)
for any other point we can use the theorem since partials are continuous
Duf = rf � u
�rst fx = y

2x2 + y2 � 4x2
(2x2 + y2)2

= y
y2 � 2x2
(2x2 + y2)2

and fy = x
2x2 + y2 � 2y2
(2x2 + y2)2

= x
2x2 � y2
(2x2 + y2)2

so at the given point
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�
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9
p
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(1;�1) � (1; 1)=0
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