MATH 349 Midterm Handout

1. Determine if the indicated sequence is bounded, ult.monotonic, and convergent

(a)
$$a_n = \frac{\ell n(n+3)}{n+3}$$

2. Determine whether the indicated series is absolutely convergent, conditionally convergent or divergent. $\sum_{n=1}^{\infty} (-1)^n \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}\right).$

3. Find the interval of convergence if $\sum_{k=1}^{\infty} \frac{2^k}{\sqrt{k}} (x-1)^{k}$.

- 4. Find the sum of (a) $\sum_{k=1}^{\infty} \frac{(\ell n \, 2)^k}{k!}$ (b) $\sum_{n=3}^{\infty} \frac{(-1)^n}{2^n(n+1)}$.
- 5. Find the Taylor series for $f(x) = \frac{1}{(x+3)x}$ around the center $x_0 = -1$, particularly the coefficient a_6 . For what values of x is the representation valid?(Hint: Use partial fractions)
- 6. Find Taylor polynomial of degree 3 for $f(x) = \ln \frac{x-1}{x}$ around the centre $x_0 = 2$.
- 7. Find a parametrization of the curve c given as the intersection of the cone { $z = \sqrt{2x^2 + 2y^2}$ } and the plane {z + x = 1}.
- 8. For the curve c given by $\mathbf{r}(t) = (2t, t^2, \ln t), t > 0$ find
 - (a) an equation of the tangent line at P(2, 1, 0);
 - (b) the arclength of c between P and $R(2e, e^2, 1)$.
- 9. For the curve c given by $\mathbf{r}(t) = (t \sin t, t \cos t, 2t)$
 - (a) find an equation of the tangent line to c at the origin ;
 - (b) find the arclength between the origin and the point $A\left(\frac{\pi}{2}, 0, \pi\right)$.
- 10. Find a parametrization of the curve c given as the intersection of two surfaces $c = \{x^2 + y^2 = 2z\} \cap \{3x - 4y - z = 0\}.$