MATH 349

Midterm Handout

1. Determine if the indicated sequence is bounded, ult.monotonic, and convergent
(a) $a_{n}=\frac{\ln (n+3)}{n+3}$
2. Determine whether the indicated series is absolutely convergent, conditionally convergent or divergent. $\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)$.
3. Find the interval of convergence if $\quad \sum_{k=1}^{\infty} \frac{2^{k}}{\sqrt{k}}(x-1)^{k}$.
4. Find the sum of

$$
\text { (a) } \sum_{k=1}^{\infty} \frac{(\ln 2)^{k}}{k!} \quad \text { (b) } \sum_{n=3}^{\infty} \frac{(-1)^{n}}{2^{n}(n+1)} \text {. }
$$

5. Find the Taylor series for $f(x)=\frac{1}{(x+3) x}$ around the center $x_{0}=-1$, particularly the coefficient a_{6}.
For what values of x is the representation valid?(Hint: Use partial fractions)
6. Find Taylor polynomial of degree 3 for $f(x)=\ln \frac{x-1}{x}$ around the centre $x_{0}=2$.
7. Find a parametrization of the curve c given as the intersection of the cone $\left\{z=\sqrt{2 x^{2}+2 y^{2}}\right\}$ and the plane $\{z+x=1\}$.
8. For the curve c given by $\mathbf{r}(t)=\left(2 t, t^{2}, \ln t\right), t>0$ find
(a) an equation of the tangent line at $P(2,1,0)$;
(b) the arclength of c between P and $R\left(2 e, e^{2}, 1\right)$.
9. For the curve c given by $\quad \mathbf{r}(t)=(t \sin t, t \cos t, 2 t)$
(a) find an equation of the tangent line to c at the origin ;
(b) find the arclength between the origin and the point $A\left(\frac{\pi}{2}, 0, \pi\right)$.
10. Find a parametrization of the curve c given as the intersection of two surfaces $c=\left\{x^{2}+y^{2}=2 z\right\} \cap\{3 x-4 y-z=0\}$.
