MATH 349
Midterm Handout-Solution
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so the sequence is convergent and thus bounded;
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thus the sequence is decreasing forxt =n+3>3 n>1
and an lower bound is 0,an upper bound is a; = %.
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and the series is abs.convergent on (%, %)
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the second one is divergent since p = % < 1,but the first one is cond.convergent since
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USE Partial fraction first
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By definition

aozf(Z):ln%:—hﬂ a; = f'(2) = %
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since f'(x) = [In(z — 1) —Inz] = i , then f"(z) = ﬁ + z%

and ay = 3f"(2) = =3, finally f"(2) = 2 — %
and a3 = %f’”(z) =1 (1- 1) - %,

. curve c¢ given as the intersection of
the cone { z = /222 + 2y?} and the plane {z + = = 1}.
from the plane z = 1 —  back to the cone (1 — z)* = 222 + 2
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and then a parametrization is r=—14+2cost,y =sint and
z=1-2=2-+2cost te€][0,2n].
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1 =%+ 2z + 22 2= (r+1)*+2y° 12( ) + 12



5. For the curve c given by r(t) = (2, Int) ,t > 0
t =1 for P(2,1,0) t =e for R(2e,¢e2 1)
1
find  r(f) = (2, o, t)
then for a)
d=1'(1) = (2,2,1) and the tangent line is
(r,y,2) =(2,1,0) +s(2,2,1)orx =2+ 2z and y=1+2z

for b) for arclenght we need
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and s = / + dt = [t2 + In t}
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= 62.
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6. For r(t) = (tsint,tcost, 2t)

r/(t) = (sint + tcost,cost — tsint,2) (product rule)

for the origin t =0

for a) sod =1’(0) = (0,1,2)

and an equation of the tangent is (x,y,2) =t(0,1,2) or £ =0,z=2y

For b)

for arclength we need ||r’ (¢)]|

|’ (£)]|* = (sint + tcost)” + (cost — tsint)® +4 = sin?t + 2t sint cost +t2cos>t+

+cos?t — 2tsintcost +t2sin®t +4 =5 + 2

now , ¢ = 0 for the origin and ¢ = 7 for the point A (g, 0, 77)
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so arclength s = / I’ (¢)]| dt = /\/5 + t2dt = ( Table a = v/5)
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7. Find a parametrization of the curve c given as the intersection of two surfaces
c={z*>+y* =2z }n{3x — 4y — 2 = 0}.
from the plane z=3r —4y into the paraboloid 2% + y* = 2(3z — 4y)
22 —6r+ 1248y = (x—3)°+(y+4)2—-25=0
SO (L‘T_?’)Z + (%)2 =1 thus a parametrization
x =3+ 5cost y=—4+ 5sint z =254 15cost — 20sint,t € [0,27).



