MATH 349 Midterm Handout-Solution

1. For the sequence
$$a_n = \frac{\ell n(n+3)}{n+3}$$

 $\lim_{n \to \infty} a_n = \sum_{\infty} L'H.R. = \lim_{x \to \infty} \frac{1}{x+3} = \frac{1}{\infty} = 0$
so the sequence is convergent and thus bounded;
For monotonicity , define $f(x) = \frac{\ln x}{x}$
 $f'(x) = \frac{1}{x} \cdot x - \ln x}{x^2} = \frac{1 - \ln x}{x^2} < 0$ for $\ln x > 1, x > e$,
thus the sequence is decreasing for $x = n + 3 \ge 3$, $n \ge 1$
and an lower bound is 0, an upper bound is $a_1 = \frac{\ln 4}{4}$.
First abs.convergence $\sum_{n=1}^{\infty} (\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}) = 1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}} + \dots =$
 $= 1 - \lim_{n \to \infty} \frac{1}{\sqrt{n+1}} = 1 - 0 = 1$ (It is a telescoping series.)
 $\sum_{n=1}^{\infty} (-1)^n \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}\right)$ is absolutely convergent .
2. For $\sum_{k=1}^{\infty} \frac{2^k}{\sqrt{k}} (x-1)^k, c = 1, a_k = \frac{2^k}{\sqrt{k}}$
 $\left|\frac{a_{k+1}}{a_k}\right| = \frac{2^{k+1}}{\sqrt{k+1}} \cdot \frac{\sqrt{k}}{2^k} = \sqrt{\frac{k}{k+1}} \cdot 2 \rightarrow 2$ $R = \frac{1}{2}$
and the series is abs.convergent on $\left(\frac{1}{2}, \frac{3}{2}\right)$
For the ends $x = \frac{1}{2}$ or $\frac{3}{2}$ we get $\sum_{k=1}^{\infty} (-1)^n \frac{1}{\sqrt{k}}$ or $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$
the second one is divergent since $p = \frac{1}{2} < 1$, but the first one is cond.convergent since the sequence $\frac{1}{\sqrt{k}} \searrow 0$
Together the series is convergent on $\left[\frac{1}{2}, \frac{3}{2}\right]$

3. For a) the series $\sum_{k=1}^{\infty} \frac{(v-2)^n}{k!}$ we know that $e^s = \sum_{k=0}^{\infty} \frac{s^k}{k!}$ for any s so $e^s - 1 = \sum_{k=1}^{\infty} \frac{s^k}{k!}$ and for $s = \ln 2$ we get $\sum_{k=1}^{\infty} \frac{(\ell n 2)^k}{k!} = e^{\ln 2} - 1 = 2 - 1 = 1.$ For b) $\sum_{n=3}^{\infty} \frac{(-1)^n}{2^n(n+1)}$ we need to know the sum of $\sum_{n=3}^{\infty} \frac{(x)^n}{(n+1)}$ for $x = -\frac{1}{2}$

and
$$\sum_{n=3}^{\infty} \frac{x^n}{(n+1)} = \frac{1}{x} \sum_{n=3}^{\infty} \frac{x^{n+1}}{(n+1)} = \frac{1}{x} \left[\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)} - \frac{x^3}{3} - \frac{x^2}{2} - \frac{x}{1} \right]$$

and since we know that $\ln(1-x) = -\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)}$
$$\sum_{n=3}^{\infty} \frac{x^n}{(n+1)} = -\frac{1}{x} \ln(1-x) - \frac{x^2}{3} - \frac{x}{2} - 1$$
 and finally for $x = -\frac{1}{2}$
$$\sum_{n=3}^{\infty} \frac{(-1)^n}{2^n(n+1)} = 2 \ln \frac{3}{2} - \frac{1}{12} + \frac{1}{4} - 1 = 2 \ln \frac{3}{2} - \frac{1-3+12}{12} = 2 \ln \frac{3}{2} - \frac{5}{6}.$$

USE Partial fraction first
$$\frac{1}{(x+3)x} = \frac{1}{3} \left[\frac{-1}{x+3} + \frac{1}{x} \right] = \frac{1}{3} \left[\frac{-1}{(x+1)+2} + \frac{1}{(x+1)-1} \right] =$$

$$= \frac{1}{3} \left[\frac{-1}{2} \cdot \frac{1}{1+\frac{x+1}{2}} - \frac{1}{1-(x+1)} \right] =$$

(using $\frac{1}{1+r} = \sum_{n=0}^{\infty} (-r)^n$ for $r = \frac{x+1}{2}$ and $\frac{1}{1-r} = \sum_{n=0}^{\infty} r^n$ for $r = x+1$)
$$= -\frac{1}{6} \sum_{n=0}^{\infty} (-1)^n \left(\frac{x+1}{2} \right)^n - \frac{1}{3} \sum_{n=0}^{\infty} (x+1)^n = \frac{-1}{3} \sum_{n=0}^{\infty} \left[\frac{(-1)^n}{2^{n+1}} + 1 \right] (x+1)^n$$

for $-1 < \frac{x+1}{2} < 1$ $-2 < x + 1 < 2$ and $-1 < x + 1 < 1$, together
 $-2 < x < 0$. And $a_6 = -\frac{1}{3} \cdot \left[\frac{1}{2^7} + 1 \right] = -\frac{1+2^7}{3\cdot2^7} = -\frac{129}{384}.$
By definition
 $a_0 = f(2) = \ln \frac{1}{2} = -\ln 2$ $a_1 = f'(2) = \frac{1}{2}$
since $f'(x) = [\ln(x-1) - \ln x]' = \frac{1}{x-1} - \frac{1}{x}$, then $f''(x) = \frac{-1}{(x-1)^2} + \frac{1}{x^2}$
and $a_2 = \frac{1}{2}f'''(2) = -\frac{3}{8}$, finally $f'''(x) = \frac{2}{(x-1)^3} - \frac{2}{x^3}$
and $a_3 = \frac{1}{6}f''''(2) = \frac{1}{3} \cdot \left(1 - \frac{1}{8}\right) = \frac{7}{24}.$

4. curve c given as the intersection of the cone { $z = \sqrt{2x^2 + 2y^2}$ } and the plane {z + x = 1 }. from the plane z = 1 - x back to the cone $(1 - x)^2 = 2x^2 + 2y^2$ $1 = x^2 + 2x + 2y^2$ $2 = (x + 1)^2 + 2y^2$ $1 = \left(\frac{x + 1}{\sqrt{2}}\right)^2 + y^2$ and then a parametrization is $x = -1 + \sqrt{2}\cos t, y = \sin t$ and $z = 1 - x = 2 - \sqrt{2}\cos t$ $t \in [0, 2\pi]$. 5. For the curve c given by $\mathbf{r}(t) = (2t, t^2, \ln t), t > 0$

$$t = 1 \text{ for } P(2, 1, 0)$$
 $t = e \text{ for } R(2e, e^2, 1)$
find $\mathbf{r}'(t) = \left(2, 2t, \frac{1}{t}\right)$

then for a)

 $\mathbf{d} = \mathbf{r}'(1) = (2, 2, 1)$ and the tangent line is (x, y, z) = (2, 1, 0) + s (2, 2, 1) or x = 2 + 2z and y = 1 + 2zfor b) for arclenght we need

$$\begin{aligned} \|\mathbf{r}'(t)\| &= \sqrt{4 + 4t^2 + \frac{1}{t^2}} = \sqrt{\frac{4t^4 + 4t^2 + 1}{t^2}} = \sqrt{\left(\frac{2t^2 + 1}{t}\right)^2} = \frac{2t^2 + 1}{|t|}\\ \text{and} \qquad s = \int_{1}^{e} \frac{2t^2 + 1}{t} dt = \left[t^2 + \ln t\right]_{1}^{e} = e^2. \end{aligned}$$

6. For
$$\mathbf{r}(t) = (t \sin t, t \cos t, 2t)$$

 $\mathbf{r}'(t) = (\sin t + t \cos t, \cos t - t \sin t, 2)$ (product rule)
for the origin $t = 0$

for a) so d = r'(0) = (0, 1, 2)

and an equation of the tangent is (x, y, z) = t(0, 1, 2) or x = 0, z = 2y

For b)

for arclength we need $\|\mathbf{r}'(t)\|$ $\|\mathbf{r}'(t)\|^2 = (\sin t + t \cos t)^2 + (\cos t - t \sin t)^2 + 4 = \sin^2 t + 2t \sin t \cos t + t^2 \cos^2 t + \cos^2 t - 2t \sin t \cos t + t^2 \sin^2 t + 4 = 5 + t^2$

now, t = 0 for the origin and $t = \frac{\pi}{2}$ for the point $A\left(\frac{\pi}{2}, 0, \pi\right)$

so arclength
$$s = \int_{0}^{\frac{\pi}{2}} \|\mathbf{r}'(t)\| dt = \int_{0}^{\frac{\pi}{2}} \sqrt{5+t^2} dt = (\text{ Table } a = \sqrt{5})$$

= $\left[\frac{t}{2}\sqrt{5+t^2} + \frac{5}{2}\ln\left(t+\sqrt{5+t^2}\right)\right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{4}\sqrt{5+\frac{\pi^2}{4}} + \frac{5}{2}\ln\left(\frac{\pi}{2}+\sqrt{5+\frac{\pi^2}{4}}\right) - \frac{5}{2}\ln\sqrt{5}.$

7. Find a parametrization of the curve c given as the intersection of two surfaces $c = \{x^2 + y^2 = 2z \} \cap \{3x - 4y - z = 0\}.$

from the plane z = 3x - 4y into the paraboloid $x^2 + y^2 = 2(3x - 4y)$ $x^2 - 6x + y^2 + 8y = (x - 3)^2 + (y + 4)^2 - 25 = 0$ so $\left(\frac{x-3}{5}\right)^2 + \left(\frac{y+4}{5}\right)^2 = 1$ thus a parametrization $x = 3 + 5\cos t$ $y = -4 + 5\sin t$ $z = 25 + 15\cos t - 20\sin t, t \in [0, 2\pi)$.