Midterm Handout-Solution

1. For the sequence $a_{n}=\frac{\ln (n+3)}{n+3}$
$\lim _{n \rightarrow \infty} a_{n}=" \frac{\infty}{\infty} " L^{\prime} H . R .=\lim _{x \rightarrow \infty} \frac{\frac{1}{x+3}}{1}=" \frac{1}{\infty} "=0$
so the sequence is convergent and thus bounded;
For monotonicity , define $f(x)=\frac{\ln x}{x}$
$f^{\prime}(x)=\frac{\frac{1}{x} \cdot x-\ln x}{x^{2}}=\frac{1-\ln x}{x^{2}}<0$ for $\ln x>1, x>e$, thus the sequence is decreasing for $x=n+3 \geq 3, n \geq 1$ and an lower bound is 0 , an upper bound is $a_{1}=\frac{\ln 4}{4}$.
First abs.convergence $\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\ldots .=$ $=1-\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n+1}}=1-0=1$ (It is a telescoping series.) $\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)$ is absolutely convergent.
2. For $\sum_{k=1}^{\infty} \frac{2^{k}}{\sqrt{k}}(x-1)^{k}, c=1, a_{k}=\frac{2^{k}}{\sqrt{k}}$
$\left|\frac{a_{k+1}}{a_{k}}\right|=\frac{2^{k+1}}{\sqrt{k+1}} \cdot \frac{\sqrt{k}}{2^{k}}=\sqrt{\frac{k}{k+1}} \cdot 2 \rightarrow 2 \quad R=\frac{1}{2}$
and the series is abs.convergent on $\left(\frac{1}{2}, \frac{3}{2}\right)$
For the ends $x=\frac{1}{2}$ or $\frac{3}{2}$ we get $\sum_{k=1}^{\infty}(-1)^{n} \frac{1}{\sqrt{k}}$ or $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$
the second one is divergent since $p=\frac{1}{2}<1$, but the first one is cond.convergent since the sequence $\frac{1}{\sqrt{k}} \searrow 0$
Together the series is convergent on $\left[\frac{1}{2}, \frac{3}{2}\right)$
3. For a) the series $\sum_{k=1}^{\infty} \frac{(\ln 2)^{k}}{k!}$
we know that $e^{s}=\sum_{\mathbf{k}=\mathbf{0}}^{\infty} \frac{s^{k}}{k!}$ for any s so $\quad e^{s}-1=\sum_{\mathbf{k}=1}^{\infty} \frac{s^{k}}{k!}$ and for $s=\ln 2$ we get
$\sum_{k=1}^{\infty} \frac{(\ln 2)^{k}}{k!}=e^{\ln 2}-1=2-1=1$.
For b) $\sum_{n=3}^{\infty} \frac{(-1)^{n}}{2^{n}(n+1)}$ we need to know the sum of $\sum_{\mathbf{n}=\mathbf{3}}^{\infty} \frac{(x)^{n}}{(n+1)}$ for $x=-\frac{1}{2}$
and $\sum_{n=3}^{\infty} \frac{x^{n}}{(n+1)}=\frac{1}{x} \sum_{n=3}^{\infty} \frac{x^{n+1}}{(n+1)}=\frac{1}{x}\left[\sum_{\mathbf{n}=\mathbf{0}}^{\infty} \frac{x^{n+1}}{(n+1)}-\frac{x^{3}}{3}-\frac{x^{2}}{2}-\frac{x}{1}\right]$
and since we know that $\ln (1-x)=-\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)}$
$\sum_{n=3}^{\infty} \frac{x^{n}}{(n+1)}=-\frac{1}{x} \ln (1-x)-\frac{x^{2}}{3}-\frac{x}{2}-1$ and finally for $x=-\frac{1}{2}$
$\sum_{n=3}^{\infty} \frac{(-1)^{n}}{2^{n}(n+1)}=2 \ln \frac{3}{2}-\frac{1}{12}+\frac{1}{4}-1=2 \ln \frac{3}{2}-\frac{1-3+12}{12}=2 \ln \frac{3}{2}-\frac{5}{6}$.
USE Partial fraction first
$\frac{1}{(x+3) x}=\frac{1}{3}\left[\frac{-1}{x+3}+\frac{1}{x}\right]=\frac{1}{3}\left[\frac{-1}{(x+1)+2}+\frac{1}{(x+1)-1}\right]=$
$=\frac{1}{3}\left[\frac{-1}{2} \cdot \frac{1}{1+\frac{x+1}{2}}-\frac{1}{1-(x+1)}\right]=$
(using $\frac{1}{1+r}=\sum_{n=0}^{\infty}(-r)^{n}$ for $r=\frac{x+1}{2}$ and $\frac{1}{1-r}=\sum_{n=0}^{\infty} r^{n}$ for $r=x+1$)
$=-\frac{1}{6} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{x+1}{2}\right)^{n}-\frac{1}{3} \sum_{n=0}^{\infty}(x+1)^{n}=\frac{-1}{3} \sum_{n=0}^{\infty}\left[\frac{(-1)^{n}}{2^{n+1}}+1\right](x+1)^{n}$
for $-1<\frac{x+1}{2}<1 \quad-2<x+1<2$ and $-1<x+1<1$, together
$-2<x<0$. And $a_{6}=-\frac{1}{3} \cdot\left[\frac{1}{2^{7}}+1\right]=-\frac{1+2^{7}}{3 \cdot 2^{7}}=-\frac{129}{384}$.
By definition
$a_{0}=f(2)=\ln \frac{1}{2}=-\ln 2 \quad a_{1}=f^{\prime}(2)=\frac{1}{2}$
since $f^{\prime}(x)=[\ln (x-1)-\ln x]^{\prime}=\frac{1}{x-1}-\frac{1}{x}$, then $f^{\prime \prime}(x)=\frac{-1}{(x-1)^{2}}+\frac{1}{x^{2}}$
and $a_{2}=\frac{1}{2} f^{\prime \prime}(2)=-\frac{3}{8}$, finally $f^{\prime \prime \prime}(x)=\frac{2}{(x-1)^{3}}-\frac{2}{x^{3}}$
and $a_{3}=\frac{1}{6} f^{\prime \prime \prime}(2)=\frac{1}{3} \cdot\left(1-\frac{1}{8}\right)=\frac{7}{24}$.
$T_{3}(x)=-\ln 2+\frac{1}{2}(x-2)-\frac{3}{8}(x-2)^{2}+\frac{7}{24}(x-2)^{3}$.
4. curve c given as the intersection of
the cone $\left\{z=\sqrt{2 x^{2}+2 y^{2}}\right\}$ and the plane $\{z+x=1\}$.
from the plane $z=1-x$ back to the cone $(1-x)^{2}=2 x^{2}+2 y^{2}$
$1=x^{2}+2 x+2 y^{2} \quad 2=(x+1)^{2}+2 y^{2} \quad 1=\left(\frac{x+1}{\sqrt{2}}\right)^{2}+y^{2}$
and then a parametrization is $\quad x=-1+\sqrt{2} \cos t, y=\sin t$ and
$z=1-x=2-\sqrt{2} \cos t \quad t \in[0,2 \pi]$.

5 . For the curve c given by $\mathbf{r}(t)=\left(2 t, t^{2}, \ln t\right), t>0$
$t=1$ for $P(2,1,0) \quad t=e$ for $R\left(2 e, e^{2}, 1\right)$
find $\quad \mathbf{r}^{\prime}(t)=\left(2,2 t, \frac{1}{t}\right)$
then for a)
$\mathbf{d}=\mathbf{r}^{\prime}(1)=(2,2,1)$ and the tangent line is
$(x, y, z)=(2,1,0)+s(2,2,1)$ or $x=2+2 z$ and $y=1+2 z$
for \mathbf{b}) for arclenght we need
$\left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{4+4 t^{2}+\frac{1}{t^{2}}}=\sqrt{\frac{4 t^{4}+4 t^{2}+1}{t^{2}}}=\sqrt{\left(\frac{2 t^{2}+1}{t}\right)^{2}}=\frac{2 t^{2}+1}{|t|}$
and $\quad s=\int_{1}^{e} \frac{2 t^{2}+1}{t} d t=\left[t^{2}+\ln t\right]_{1}^{e}=e^{2}$.
6. For $\quad \mathbf{r}(t)=(t \sin t, t \cos t, 2 t)$
$\mathbf{r} \prime(t)=(\sin t+t \cos t, \cos t-t \sin t, 2) \quad$ (product rule)
for the origin $t=0$
for a) \quad so $\mathbf{d}=\mathbf{r}^{\prime}(0)=(0,1,2)$
and an equation of the tangent is $\quad(x, y, z)=t(0,1,2)$ or $x=0, z=2 y$

For b)

for arclength we need $\left\|\mathbf{r}^{\prime}(t)\right\|$
$\left\|\mathbf{r}^{\prime}(t)\right\|^{2}=(\sin t+t \cos t)^{2}+(\cos t-t \sin t)^{2}+4=\sin ^{2} t+2 t \sin t \cos t+t^{2} \cos ^{2} t+$ $+\cos ^{2} t-2 t \sin t \cos t+t^{2} \sin ^{2} t+4=5+t^{2}$
now , $t=0$ for the origin and $t=\frac{\pi}{2}$ for the point $A\left(\frac{\pi}{2}, 0, \pi\right)$
so arclength $\quad s=\int_{0}^{\frac{\pi}{2}}\left\|\mathbf{r}^{\prime}(t)\right\| d t=\int_{0}^{\frac{\pi}{2}} \sqrt{5+t^{2}} d t=($ Table $a=\sqrt{5})$
$=\left[\frac{t}{2} \sqrt{5+t^{2}}+\frac{5}{2} \ln \left(t+\sqrt{5+t^{2}}\right)\right]_{0}^{\frac{\pi}{2}}=\frac{\pi}{4} \sqrt{5+\frac{\pi^{2}}{4}}+\frac{5}{2} \ln \left(\frac{\pi}{2}+\sqrt{5+\frac{\pi^{2}}{4}}\right)-\frac{5}{2} \ln \sqrt{5}$.
7. Find a parametrization of the curve c given as the intersection of two surfaces $c=\left\{x^{2}+y^{2}=2 z\right\} \cap\{3 x-4 y-z=0\}$.
from the plane $\quad z=3 x-4 y \quad$ into the paraboloid $x^{2}+y^{2}=2(3 x-4 y)$ $x^{2}-6 x+y^{2}+8 y=(x-3)^{2}+(y+4)^{2}-25=0$
so $\quad\left(\frac{x-3}{5}\right)^{2}+\left(\frac{y+4}{5}\right)^{2}=1 \quad$ thus a parametrization
$x=3+5 \cos t \quad y=-4+5 \sin t \quad z=25+15 \cos t-20 \sin t, t \in[0,2 \pi)$.

