
MATH 349
Midterm Handout-Solution
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USE Partial fraction �rst
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By de�nition
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4. curve c given as the intersection of

the cone f z =
p
2x2 + 2y2g and the plane fz + x = 1g:

from the plane z = 1� x back to the cone (1� x)2 = 2x2 + 2y2

1 = x2 + 2x+ 2y2 2 = (x+ 1)2 + 2y2 1 =

 
x+ 1p
2
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+ y2

and then a parametrization is x = �1 +
p
2 cos t; y = sin t and

z = 1� x = 2�
p
2 cos t t 2 [0; 2�] :
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5. For the curve c given by r(t) = (2t; t2; ln t) ; t > 0

t = 1 for P (2; 1; 0) t = e for R (2e; e2; 1)

�nd r0(t) =
�
2; 2t;
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then for a)

d = r0(1) = (2; 2; 1) and the tangent line is

(x; y; z) = (2; 1; 0) + s (2; 2; 1) or x = 2 + 2z and y = 1 + 2z
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6. For r (t) = (t sin t; t cos t; 2t)

r0 (t) = (sin t+ t cos t; cos t� t sin t; 2) (product rule)
for the origin t = 0

for a) so d = r'(0) = (0; 1; 2)

and an equation of the tangent is (x; y; z) = t (0; 1; 2) or x = 0; z = 2y

For b)

for arclength we need kr0 (t)k
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7. Find a parametrization of the curve c given as the intersection of two surfaces

c = fx2 + y2 = 2z g\f3x� 4y � z = 0g:

from the plane z = 3x� 4y into the paraboloid x2 + y2 = 2(3x� 4y)
x2 � 6x+ y2 + 8y = (x� 3)2 + (y + 4)2 � 25 = 0

so
�
x�3
5
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+
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= 1 thus a parametrization

x = 3 + 5 cos t y = �4 + 5 sin t z = 25 + 15 cos t� 20 sin t; t 2 [0; 2�) :


