DEPARTMENT OF MATHEMATICS AND STATISTICS

MIDTERM EXAM

MATH 349 LEC 01/02

Fall 2007
TIME: 90 minutes

Name: \qquad I.D. No.

Total 80

Each question is for 10 points.

1. Is the sequence $a_{n}=\frac{1}{n} \cos (n \pi)$ convergent, ultimatelly monotonic,alternating,bounded? $\cos (n \pi)=(-1)^{n} \quad$ so the sequence is alternating thus NOT monotonic since $\quad-\frac{1}{n} \leq \frac{1}{n} \cos (n \pi) \leq \frac{1}{n}$ and $\lim _{n \rightarrow \infty} \frac{ \pm 1}{n}=0$ by Squ,Th. the sequence is also convergent to 0
also a lower bound..... $-1 \leq-\frac{1}{n} \leq \frac{1}{n} \cos (n \pi) \leq \frac{1}{n} \leq 1 \ldots$.an upper bound
2. the series $\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$
$\sum_{n=1}^{\infty}\left|\frac{(-1)^{n}}{n}\right|=\sum_{n=1}^{\infty} \frac{1}{n}=\infty$ by Integral test $\int_{1}^{\infty} \frac{1}{x} d x=[\ln x]_{1}^{\infty}=\infty$
since $f(x)=\frac{1}{x}$ is decr. ,cont.,positve $=\frac{1}{\text { incr.,pos. }}$.
now, try Alt.Test $\quad a_{n}=\frac{1}{n}$ is decr. sequence ,see above
and $\lim _{n \rightarrow \infty} a_{n}=0 \quad$ the series is cond.convergent.
3. $\sum_{n=0}^{\infty} \frac{\ln \left(2^{n}\right)}{5^{n}+1}=\sum_{n=0}^{\infty} \frac{n \ln 2}{5^{n}+1}=\ln 2 \sum_{n=0}^{\infty} \frac{n}{5^{n}+1}$
the series has positive terms so try Ratio Test
$\frac{a_{n+1}}{a_{n}}=\frac{n+1}{5^{n+1}+1} \cdot \frac{5^{n}+1}{n}=\frac{n+1}{n} \cdot \frac{5^{n}+1}{5^{n+1}+1}=\left(1+\frac{1}{n}\right) \frac{5^{n}+1}{5^{n+1}+1} \rightarrow \frac{1}{5}$
SINCE
$\lim _{n \rightarrow \infty} \frac{5^{n}+1}{5^{n+1}+1} \cdot \frac{\frac{1}{5^{n+1}}}{\frac{1}{5^{n+1}}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{5}+\frac{1}{5^{n+1}}}{1+\frac{1}{5^{n+1}}}=\frac{1}{5}$ or by L'H.R. $\lim _{n \rightarrow \infty} \frac{5^{n}+1}{5^{n+1}+1}=\lim _{x \rightarrow \infty} \frac{5^{x} \ln 5}{5^{x+1} \ln 5}=\frac{1}{5}$ and since the limit is less than 1 the series is convergent by Ratio test.

ALSO
$\ln \left(2^{n}\right) \leq 2^{n} \quad 5^{n}+1>5^{n} \quad \frac{\ln \left(2^{n}\right)}{5^{n}+1}<\frac{2^{n}}{5^{n}}=\left(\frac{2}{5}\right)^{n}$..geom. series convergent since $\frac{2}{5}<1$ and the original series is convergent by Comp.test
4. Find Taylor series around $c=-1$ for the function $f(x)=\frac{1}{(1-x)^{3}}$. Where is the expansion valid?
we are looking for a_{n} such that $\quad f(x)=\sum_{n=0}^{\infty} a_{n}(x+1)^{n}$
first $\quad t=x+1 \quad x=t-1$
$\frac{1}{1-x}=\frac{1}{2-t}=\frac{1}{2} \cdot \frac{1}{1-\frac{t}{2}}=\frac{1}{2} \sum_{n=0}^{\infty}\left(\frac{t}{2}\right)^{n}=\sum_{n=0}^{\infty} \frac{1}{2^{n+1}}(x+1)^{n}$ for $-1<\frac{t}{2}<1$
$-2<x+1<2 \quad$ thus $\quad-3<x<1$
now diffrentiate twice
$\frac{1}{(1-x)^{2}}=\sum_{n=1}^{\infty} \frac{n}{2^{n+1}}(x+1)^{n-1} \quad \frac{2}{(1-x)^{3}}=\sum_{n=2}^{\infty} \frac{n(n-1)}{2^{n+1}}(x+1)^{n-2}$
finally
$\frac{1}{(1-x)^{3}}=\sum_{n=2}^{\infty} \frac{n(n-1)}{2^{n+2}}(x+1)^{n-2}=\sum_{k=0}^{\infty} \frac{(k+2)(k+1)}{2^{k+4}}(x+1)^{k} \quad$ for $-3<x<1$.
5. Find the sum of $\quad \sum_{n=2}^{\infty} \frac{(-1)^{n} 2^{2 n}}{n!}=\sum_{n=2}^{\infty} \frac{(-4)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-4)^{n}}{n!}-(-4)-(1)=e^{-4}+3$ using $\quad e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ for any x.

6 . For the curve c given by $\quad \mathbf{r}(t)=\left(t e^{t}, e^{-t}, e^{2 t}\right)$
find an equation of the tangent line to c at the point $A(0,1,1)$.
first $t=0$ for A
then $\quad \mathbf{r}^{\prime}(t)=\left(e^{t}+t e^{t},-e^{-t}, 2 e^{2 t}\right)$ and $\mathbf{d}=\mathbf{r}^{\prime}(0)=(1,-1,2)$
thus $\quad(x, y, z)=(0,1,1)+s(1,-1,2)$.
Find a parametrization of the curve c given as the intersection of two surfaces
$c=\left\{x^{2}+y^{2}=z\right\} \cap\{2 x-y+z=2\}$.
from the plane $z=2-2 x+y$ into the paraboloid $x^{2}+y^{2}=2-2 x+y$
$x^{2}+2 x+y^{2}-y=2 \quad(x+1)^{2}+\left(y-\frac{1}{2}\right)^{2}=\frac{13}{4}$
so $x=-1+\frac{\sqrt{13}}{2} \cos t \quad y=\frac{1}{2}+\frac{\sqrt{13}}{2} \sin t \quad z=\frac{9}{2}+\sqrt{13} \cos t-\frac{\sqrt{13}}{2} \sin t$
for $\quad t \in[0,2 \pi]$
7. Find the arclength of the curve c given by $\mathbf{r}(t)=\left(t^{2}, 2 t^{3}, t^{2}\right)$ betweeen the origin and $P(1,-2,1)$.
first $\quad t=0$ for the origin $\quad t=-1$ for the point P
$\mathbf{r}^{\prime}(t)=\left(2 t, 6 t^{2}, 2 t\right)$
$\left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{4 t^{2}+36 t^{4}+4 t^{2}}=\sqrt{8 t^{2}+36 t^{4}}=\sqrt{4 t^{2}\left(2+9 t^{2}\right)}=2|t| \sqrt{2+9 t^{2}}$
$t \leq 0 \rightarrow|t|=-t \quad$ finally, the arclength
$s=\int_{-1}^{0}\left\|\mathbf{r}^{\prime}(t)\right\| d t=-2 \int_{-1}^{0} t \sqrt{2+9 t^{2}} d t \quad$ subst. $u=2+9 t^{2}, d u=18 t d t$
thus $\quad s=-\frac{2}{18} \int_{11}^{2} \sqrt{u} d u=\frac{1}{9}\left[\frac{2}{3} u^{\frac{3}{2}}\right]_{2}^{11}=\frac{2}{27}\left[11^{\frac{3}{2}}-2^{\frac{3}{2}}\right]$.

