The University of Calgary
 Department of Mathematics and Statistics
 MATH 349 Lec 01/02
 Quiz \# 1R

Fall 2007
Name: \qquad I.D.\#: \qquad

JUSTIFY YOUR ANSWERS.
Answer each question in the space provided.
A correct answer without work shown may be worth 0 points, while an incorrect answer with full justifiction may be worth partial credit.

1. Let $a_{n}=\frac{n^{2}}{e^{n}} \quad$ for $n \geq 1$.

Is the sequence ultimately monotonic, bounded and convergent?Explain.
$a_{n}>0 \quad \lim _{n \rightarrow \infty} \frac{n^{2}}{e^{n}}=$ (L'H.R.twice) $\lim _{x \rightarrow \infty} \frac{2 x}{e^{x}}=\lim _{x \rightarrow \infty} \frac{2}{e^{x}}=0$
the sequence is convergent,therefore bounded above and bounded below (by 0) for monotonicity
for $x \geq 1 \quad f(x)=\frac{x^{2}}{e^{x}}=x^{2} e^{-x} \quad f^{\prime}(x)=2 x e^{-x}-x^{2} e^{-x}=x e^{-x}(2-x)<0 \quad$ if $x>2$
thus the sequence is decreasing for $n \geq 3 \quad$ ult.decr.
2. Let $b_{n}=\frac{\cos n}{n^{2}}$ for $n \geq 1$. Is the sequence $\left\{b_{n}\right\}$ ultimately monotonic, bounded, alternating, convergent?
b_{n} is sometimes positive,sometimes negative so it is NOT monotonic, neither alternating: $b_{1}>0, b_{2}<0, b_{3}<0$,

$$
\begin{aligned}
b_{4}<0, b_{5}>0, b_{6}>0, b_{7}>0,3 n e g, 3 p o s, & \ldots \\
& \lim _{n \rightarrow \infty} \frac{\cos n}{n^{2}}=0 \text { by Squ, th.,since } \quad \frac{-1}{n^{2}} \leq \frac{\cos n}{n^{2}} \leq \frac{1}{n^{2}} \text { and } \lim _{n \rightarrow \infty} \frac{ \pm 1}{n^{2}}=0
\end{aligned}
$$

the sequence is convergent and bounded

$$
-1 \leq \frac{-1}{n^{2}} \leq \frac{\cos n}{n^{2}} \leq \frac{1}{n^{2}} \leq 1
$$

3. Evaluate the limit $\quad \lim _{n \rightarrow \infty}\left(\sqrt{2 n^{2}+1}-n\right) \quad$ Is the sequence bounded?

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(\sqrt{2 n^{2}+1}-n\right)=\lim _{n \rightarrow \infty}\left(\sqrt{2 n^{2}+1}-n\right) \cdot \frac{\sqrt{2 n^{2}+1}+n}{\sqrt{2 n^{2}+1}+n}=\lim _{n \rightarrow \infty} \frac{2 n^{2}+1-n^{2}}{\sqrt{2 n^{2}+1}+n}= \\
& =\lim _{n \rightarrow \infty} \frac{n^{2}+1}{\sqrt{2 n^{2}+1}+n} \cdot \frac{\frac{1}{n}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{n+\frac{1}{n}}{\sqrt{2+\frac{1}{n^{2}}}+1}=+\infty
\end{aligned}
$$

the sequence is divergent, not bounded above, but bounded below, $b_{n}>0$.

