The University of Calgary Department of Mathematics and Statistics MATH 349 Lec 01/02 Quiz # 1R

Fall 2007

Name: I.D.#:

JUSTIFY YOUR ANSWERS.

Answer each question in the space provided.

A correct answer without work shown may be worth 0 points,

while an incorrect answer with full justification may be worth partial credit.

1. Let $a_n = \frac{n^2}{e^n}$ for $n \ge 1$.

Is the sequence ultimately monotonic, bounded and convergent?Explain. [5]

$$a_n > 0$$
 $\lim_{n \to \infty} \frac{n^2}{e^n} = (L'H.R.twice) \lim_{x \to \infty} \frac{2x}{e^x} = \lim_{x \to \infty} \frac{2}{e^x} = 0$

the sequence is **convergent**, therefore **bounded above and bounded below** (by 0) for monotonicity

for
$$x \ge 1$$
 $f(x) = \frac{x^2}{e^x} = x^2 e^{-x}$ $f'(x) = 2xe^{-x} - x^2 e^{-x} = xe^{-x}(2-x) < 0$ if $x > 2$

thus the sequence is decreasing for $n \ge 3$ ult.decr.

2. Let $b_n = \frac{\cos n}{n^2}$ for $n \ge 1$. Is the sequence $\{b_n\}$ ultimately monotonic, bounded, alternating, convergent? [5]

 b_n is sometimes positive, sometimes negative so it is **NOT monotonic**, neither alternating: $b_1 > 0, b_2 < 0, b_3 < 0$,

$$b_4 < 0, b_5 > 0, b_6 > 0, b_7 > 0, 3neg, 3pos, \dots$$

$$\lim_{n \to \infty} \frac{\cos n}{n^2} = 0 \text{ by Squ, th.,since} \qquad \frac{-1}{n^2} \le \frac{\cos n}{n^2} \le \frac{1}{n^2} \text{ and } \lim_{n \to \infty} \frac{\pm 1}{n^2} = 0$$

the sequence is convergent and bounded

$$-1 \le \frac{-1}{n^2} \le \frac{\cos n}{n^2} \le \frac{1}{n^2} \le 1$$

3. Evaluate the limit $\lim_{n \to \infty} \left(\sqrt{2n^2 + 1} - n \right)$ Is the sequence bounded? [5]

$$\lim_{n \to \infty} \left(\sqrt{2n^2 + 1} - n\right) = \lim_{n \to \infty} \left(\sqrt{2n^2 + 1} - n\right) \cdot \frac{\sqrt{2n^2 + 1} + n}{\sqrt{2n^2 + 1} + n} = \lim_{n \to \infty} \frac{2n^2 + 1 - n^2}{\sqrt{2n^2 + 1} + n} = \lim_{n \to \infty} \frac{n^2 + 1}{\sqrt{2n^2 + 1} + n} = \lim_{n \to \infty} \frac{n + \frac{1}{n}}{\sqrt{2n^2 + 1} + n} = +\infty$$

the sequence is divergent, not bounded above , but bounded below, $b_n > 0$.