The University of Calgary

# Department of Mathematics and Statistics <br> MATH 349-01/02 

Quiz \# 2R
Fall,2007
Name:
I.D.\#:

1. Find the sum of the series $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n} \pi^{n+2}}{4^{2 n}}=\pi^{2} \sum_{n=1}^{\infty}\left(\frac{-\pi}{16}\right)^{n}=\pi^{2} \cdot \frac{\left(\frac{-\pi}{16}\right)}{1+\frac{\pi}{16}}=\frac{-\pi^{3}}{16+\pi}$ using $\sum_{n=N}^{\infty} r^{n}=\frac{r^{N}}{1-r}$ for $-1<r<1$.
2. Is the series $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln n}}$.convergent or divergent?Explain.

By Integral Test:: $f(x)=\frac{1}{x \sqrt{\ln x}}$ is cont. positive and decr $\left(=\frac{1}{\text { incr }}\right)$ for $x \geq 2$
$\int_{2}^{\infty} \frac{d x}{x \sqrt{\ln x}}=\left(\right.$ subst. $\left.u=\ln x, d u=\frac{d x}{x}\right)=\int_{\ln 2}^{\infty} \frac{d u}{\sqrt{\ln u}}=[2 \sqrt{\ln u}]_{\ln 2}^{\infty}=\infty$
the integral is divergent so is the series.
3. Is the series $\sum_{n=2}^{\infty} \cos \left(\frac{1}{n}\right)$.convergent or divergent?Explain.

The series is divergent. since $\lim _{n \rightarrow \infty} \cos \frac{1}{n}=\cos 0=1 \neq 0$ necessary condition

