The University of Calgary
 Department of Mathematics and Statistics
 MATH 349-01/02 Quiz \# 3T

Fall 2007
Name: \qquad I.D.\#: \qquad

Note:Use of scientific, non-programmable calculators is allowed ; the use of one page of notes is allowed.The quiz is 45 minutes

1. Is the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt{n}}{n+1}$ absolutely or conditionally convergent or divergent?Explain.
2. Find the centre,radius and interval of convergence of power series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(3 x+2)^{n}}{n \sqrt{n}} \tag{5}
\end{equation*}
$$

3. Express $f(x)=\frac{1}{x^{2}}$ in powers of $(x-3)$ On what interval is the representation valid?

Solutions

For1)
First $\sum_{n=1}^{\infty}\left|(-1)^{n} \frac{\sqrt{n}}{n+1}\right|=\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n+1}=\infty$ since it is equivalent to $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
to show that $a_{n}=\frac{\sqrt{n}}{n+1} \backsim b_{n}=\frac{1}{\sqrt{n}} \quad \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{n+1} \cdot \sqrt{n}=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1 \neq 0$
(Limit Comp.Test)
$\sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt{n}}{n+1}$ is conditionally convergent by Alternating Test::
the sequence a_{n} is decreasing and limit is 0 .
$\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{n+1}=\lim _{n \rightarrow \infty} \frac{\frac{1}{\sqrt{n}}}{1+\frac{1}{n}}=0$ and
$f^{\prime}(x)=\left(\frac{\sqrt{x}}{x+1}\right)^{\prime}=\frac{\frac{1}{2 \sqrt{x}}(x+1)-\sqrt{x}}{(x+1)^{2}}=\frac{x+1-2 x}{2 \sqrt{x}(x+1)^{2}}=\frac{1-x}{2 \sqrt{x}(x+1)^{2}}<0$ for $x>1$
OR
$a_{n+1}<a_{n} \quad \frac{\sqrt{n+1}}{n+2}<\frac{\sqrt{n}}{n+1} \quad(n+1) \sqrt{n+1}<(n+2) \sqrt{n}$
square both sides
$(n+1)^{3}<n(n+2)^{2} \quad n^{3}+3 n^{2}+3 n+1<n^{3}+4 n^{2}+4 n \quad 1<n^{2}+n$
For 2)
the centre is $c=-\frac{2}{3}$ and $a_{n}=\frac{3^{n}}{n^{\frac{3}{2}}}$ since $\sum_{n=1}^{\infty} \frac{(3 x+2)^{n}}{n \sqrt{n}}=\sum_{n=1}^{\infty} \frac{3^{n}}{n^{\frac{3}{2}}}\left(x+\frac{2}{3}\right)^{n}$ for the radius
$\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{3^{n+1}}{(n+1)^{\frac{3}{2}}} \cdot \frac{n^{\frac{3}{2}}}{3^{n}}=3\left(\frac{n}{n+1}\right)^{\frac{3}{2}} \rightarrow 3$ as $x \rightarrow \infty$, so $R=\frac{1}{3}$
and the series is absolutely convergent for $x \in\left(-1,-\frac{1}{3}\right)$
now for $x=-1$ and $x=-\frac{1}{3}$ both series are also abs.convergent since $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ is convergent
p-series with $p=\frac{3}{2}>1$.Together the series is abs.convergent for $x \in\left[-1,-\frac{1}{3}\right]$,otherwise divergent.

For 3)
first $\quad x-3=t \quad x=t+3$
$\frac{1}{x}=\frac{1}{t+3}=\frac{1}{3} \cdot \frac{1}{1+\frac{t}{3}}=\frac{1}{3} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{x-3}{3}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} \frac{(x-3)^{n}}{3^{n+1}}$
for $-1<\frac{x-3}{3}<1$, so $-3<x-3<3$, and finally $0<x<6$
(using $\sum_{n=0}^{\infty}(-1)^{n} r^{n}=\frac{1}{1+r}$ for $-1<r<1$) now, differentiate
$\frac{-1}{x^{2}}=\sum_{n=1}^{\infty}(-1)^{n} \frac{n(x-3)^{n-1}}{3^{n+1}} \quad$ so for $0<x<6$
$\frac{1}{x^{2}}=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n(x-3)^{n-1}}{3^{n+1}}=\sum_{k=0}^{\infty}(-1)^{k} \frac{(k+1)(x-3)^{k}}{3^{k+2}}$
$k=n-1$

