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1. Is the series
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2. Find the centre,radius and interval of convergence of power series
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3. Express f (x) =
1

x2
in powers of (x� 3) On what interval is the representation valid? [5]
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( Limit Comp.Test)
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square both sides
(n+ 1)3 < n (n+ 2)2 n3 + 3n2 + 3n+ 1 < n3 + 4n2 + 4n 1 < n2 + n
For 2)

the centre is c = �2
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! 3 as x!1; so R = 1
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and the series is absolutely convergent for x 2
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now for x = �1 and x = �1
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both series are also abs.convergent since
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p-series with p = 3
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> 1:Together the series is abs.convergent for x 2
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divergent:
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1

x
=

1

t+ 3
=
1

3
� 1

1 + t
3

=
1

3

1X
n=0

(�1)n
�
x� 3
3

�n
=

1X
n=0

(�1)n (x� 3)
n

3n+1

for �1 < x�3
3
< 1; so �3 < x� 3 < 3; and �nally 0 < x < 6
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