The University of Calgary
 Department of Mathematics and Statistics
 MATH 349-01/02 Quiz \# 5R Fall 2007

Name: \qquad I.D.\#:

1. For $f(x, y)=\frac{x}{x^{2}+y^{2}}, f: R^{2} \rightarrow R$ and $\mathbf{g}(u, v)=\left(\frac{u}{v^{2}}, u^{2} v\right), \mathbf{g}: R^{2} \rightarrow R^{2}$ find $\nabla h=\left(\frac{\partial h}{\partial u}, \frac{\partial h}{\partial v}\right)$ where $h=f \circ \mathbf{g}$ at the point $u=2, v=-1$

using the chain rule.

i.e. $h(u, v)=f(x, y)$ with $x=\frac{u}{v^{2}}$ and $y=u^{2} v$.
2. For $f(x, y)=x^{2} \ln \left(y^{2}+e^{x}\right)+\sin \left(x y^{2}\right)$ find the directional derivative at $A(0,-1)$ in the direction from from the point $A(0,-1)$ to the point $B(1,1)$.
3. Find an equation of the tangent plane to $\quad f(x, y)=e^{y \sqrt{2 x}}$

$$
\begin{equation*}
\text { at } x_{0}=2 \quad y_{0}=0 \tag{5}
\end{equation*}
$$

Solution

For 1)
first we need $\nabla f=\left(f_{x}, f_{v}\right)=\left(\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}, \frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}}\right)$ for any $(x, y) \neq(0,0)$ for $u=2, v=-1 \quad x=2 \quad y=-4$
thus

$$
\nabla f(2,-4)=\left(\frac{12}{400}, \frac{16}{400}\right)=\left(\frac{3}{100}, \frac{4}{100}\right)=\frac{1}{100}(3,4)
$$

and
$\frac{\partial x}{\partial u}=\frac{1}{v^{2}}=1 \quad \frac{\partial x}{\partial v}=\frac{-2 u}{v^{3}}=4 \quad \frac{\partial y}{\partial u}=2 u v=-4 \quad \frac{\partial y}{\partial v}=u^{2}=4$ at $u=2, v=-1$ $\frac{\stackrel{\text { so }}{ }}{\partial u}(2,-1)=\frac{\partial f}{\partial x}(2,-4) \cdot \frac{\partial x}{\partial u}(2,-1)+\frac{\partial f}{\partial y}(2,-4) \cdot \frac{\partial y}{\partial u}(2,-1)=\frac{1}{100}(3,4) \bullet(1,-4)=\frac{-13}{100}$ $\frac{\partial h}{\partial v}(2,-1)=\frac{\partial f}{\partial x}(2,-4) \cdot \frac{\partial x}{\partial v}(2,-1)+\frac{\partial f}{\partial y}(2,-4) \cdot \frac{\partial y}{\partial v}(2,-1)=\frac{1}{100}(3,4) \bullet(4,4)=\frac{280}{100}=$ $\frac{7}{25}$

OR
at $u=2, v=-1$ we get $D \mathbf{g}(2,-1)=\left[\begin{array}{ll}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{array}\right]=\left[\begin{array}{cc}1 & 4 \\ -4 & 4\end{array}\right]$
then $\nabla h(2,-1)=\nabla f(-2,-2) D \mathbf{g}(2,-1)=\left[\begin{array}{cc}\frac{3}{100} & \frac{4}{100}\end{array}\right]\left[\begin{array}{cc}1 & 4 \\ -4 & 4\end{array}\right]=\left[\begin{array}{cc}\frac{-13}{100} & \frac{7}{25}\end{array}\right]$

For 2)

the direction $\quad \overrightarrow{A B}=(1,2) \quad \mathbf{u}=\frac{1}{\sqrt{5}}(1,2)$
$f_{x}=2 x \ln \left(y^{2}+e^{x}\right)+\frac{x^{2} e^{z}}{y^{2}+e^{x}}+y^{2} \cos \left(x y^{2}\right) \quad f_{y}=\frac{2 x^{2} y}{y^{2}+e^{x}}+2 x y \cos \left(x y^{2}\right)$
$\nabla f(0,-1)=(1,0) \quad$ both partials are cont.so
by Theorem $\quad D_{\mathbf{u}} f(0,-1)=\nabla f(0,-1) \bullet \mathbf{u}=(1,0) \circ \frac{1}{\sqrt{5}}(1,2)=\frac{1}{\sqrt{5}}$

For 3)

for $f(x, y)=e^{y \sqrt{2 x}} \quad f(2,0)=1$ so the point is $P(2,0,1)$ and $f_{x}=e^{y \sqrt{2 x}} \cdot \frac{y}{\sqrt{2 x}} \quad$ since $\left[(2 x)^{\frac{1}{2}}\right]^{\prime}=\frac{1}{2}(2 x)^{-\frac{1}{2}} \cdot 2$
$f_{y}=e^{y \sqrt{2 x}} \cdot \sqrt{2 x} \quad \nabla f(2,0)=(0,2)$
so a normal is $\mathbf{n}=(\nabla f(2,0),-1)=(0,2,-1)$ and tangent plane $2 y-z=d$ using $P \quad 0-1=d \quad 2 y-z+1=0$

