The University of Calgary
 Department of Mathematics and Statistics
 MATH 349-01/02 Quiz \# 5T Fall,2007

Name: \qquad I.D. \#: \qquad

1. For $f(x, y, z)=\left(\frac{\ln y}{x \sqrt{z}}+\cos \left(\frac{\pi z}{2}\right)\right)$ and $\mathbf{g}: R \rightarrow R^{3}, \mathbf{g}(t)=\left(t^{2}, \sqrt{t}, \frac{2}{\sqrt{t}}\right)$
find $h^{\prime}(1)$ where $h=f \circ \mathbf{g} \quad$ using Chain Rule
HINT: $h(t)=f(x, y, z)$ where $x=t^{2}, y=\sqrt{t}$ and $z=\frac{2}{\sqrt{t}}$.
2. Find an equation of the tangent plane to $\quad f(x, y)=\ln \left(\frac{\sqrt{x^{2}+4 y}}{3}\right)$ at $x_{0}=-1 \quad y_{0}=2$ HINT: Simplify first!
3. For the function. $f(x, y)=\frac{y}{x^{4}+y^{2}} \quad$ find the directional derivative at $A(-1,1)$ in the direction of the line $y=3 x+4$ (from left to right).

Solutions

For 1) $\quad \nabla f=\left(f_{x}, f_{y}, f_{z}\right)$
$f_{x}=-\frac{\ln y}{x^{2} \sqrt{z}}, \quad f_{y}=\frac{1}{x y \sqrt{z}} \quad f_{z}=\left[-\frac{\ln y}{2 x z \sqrt{z}}+\frac{\pi}{2} \sin \left(\frac{\pi}{2} z\right)\right]$ are cont.
for any $x, y>0$ and $z>0$.
$\mathbf{g}^{\prime}=\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(2 t, \frac{1}{2 \sqrt{t}},-\frac{1}{t \sqrt{t}}\right)$ at $t=1$
$\mathbf{g}^{\prime}(1)=\left(x^{\prime}(1), y^{\prime}(1), z^{\prime}(1)\right)=\left(2, \frac{1}{2},-1\right)$
if $t=1$ then $x=1, y=1, z=2$ and
$\nabla f(1,1,2)=\left(0, \frac{1}{\sqrt{2}}, 0\right)$ since $\sin \pi=0$
by Chain Rule $\quad h^{\prime}=\nabla f \bullet \mathrm{~g}^{\prime}=1 \frac{1}{2 \sqrt{2}} \quad$ OR
$h^{\prime}(1)=f_{x}(1,1,2) x^{\prime}(1)+f_{y}(1,1,2) y^{\prime}(1)+f_{z}(1,1,2) z^{\prime}(1)=$ $=0+\frac{1}{\sqrt{2}}\left(\frac{1}{2}\right)+0=\frac{1}{2 \sqrt{2}}$.

For 2)

first $f(-1,2)=\ln \left(\frac{\sqrt{x^{2}+4 y}}{3}\right)=\ln 1=0$ so the point on the graph is $P(-1,2,0)$ you can simplify $\quad f(x, y)=\ln \left(\frac{\sqrt{x^{2}+4 y}}{3}\right)=\frac{1}{2} \ln \left(x^{2}+4 y\right)-\ln 3$ partials $f_{x}=\frac{x}{x^{2}+4 y} \quad f_{y}=\frac{2}{x^{2}+4 y}$
and $\quad f_{x}(-1,2)=-\frac{1}{9} \quad f_{y}(-1,2)=\frac{2}{9}$
and a normal is $\mathbf{n}=(a, b, c)=(\nabla f,-1)=\left(-\frac{1}{9}, \frac{2}{9},-1\right)$ or $(1,-2,9)$

$$
x-2 y+9 z=d \text { and it goes through } P \quad-1-4=d \text { so } d=-5
$$

and $\quad x-2 y+9 z+5=0 \quad$ OR
$z=f(-1,2)+f_{x}(-1,2)(x+1)+f_{y}(-1,2)(y-2)=\frac{-1}{9}(x+1)+\frac{2}{9}(y-2)$
For 3)
$f(x, y)=\frac{y}{x^{4}+y^{2}} \quad i$ s defined if $(x, y) \neq(0,0)$
$f_{x}=\frac{-4 x^{3} y}{\left(x^{4}+y^{2}\right)^{2}} \quad f_{y}=\frac{1}{x^{4}+y^{2}}-\frac{2 y^{2}}{\left(x^{4}+y^{2}\right)^{2}}$ both are cont. for $(x, y) \neq(0,0)$
a direction vctor of $y=3 x+4 \quad x=t, y=3 t+4 \quad$ is $(1,3)$ so $\mathbf{u}=\frac{1}{\sqrt{10}}(1,3)$ and by Theorem $D_{\mathbf{u}} f($

