DEPARTMENT OF MATHEMATICS AND STATISTICS

MIDTERM EXAM

MATH 349 LEC 01/02

Fall 2008

TIME:90 minutes

SOLUTION

Each questions is for 10 marks.Calculators allowed.Table attached. Total 60
Explain each step.

1. the sequence $a_{n}=\frac{\sqrt{n}}{n^{2}+27}>0 \ldots$... lower bound, also $a_{n}<1$..an upper bound
$\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{n^{2}+27} \cdot \frac{\frac{1}{n^{2}}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{\frac{3}{2}}}}{1+\frac{27}{n^{2}}}=0 \ldots$ convergent
$f^{\prime}(x)=\left(\frac{\sqrt{x}}{x^{2}+27}\right)^{\prime}=\frac{\frac{1}{2 \sqrt{x}}\left(x^{2}+27\right)-2 x \sqrt{x}}{\left(x^{2}+27\right)^{2}}=\frac{\left(x^{2}+27\right)-4 x^{2}}{2 \sqrt{x}\left(x^{2}+27\right)^{2}}=\frac{27-3 x^{2}}{2 \sqrt{x}\left(x^{2}+27\right)^{2}}<0$
for $x>3$
thus the sequence is ult.decreasing and the best upper bound is $a_{3}=\frac{\sqrt{3}}{36}$.
2. For $\sum_{n=2}^{\infty} \frac{\sqrt{\ln n}}{n}(x-1)^{n}$ the centre, is $c=1, a_{n}=\frac{\sqrt{\ln n}}{n}$
for the radius : $\frac{a_{n+1}}{a_{n}}=\frac{\sqrt{\ln (n+1)}}{n+1} \cdot \frac{n}{\sqrt{\ln n}}=\sqrt{\frac{\ln (n+1)}{\ln n}} \cdot \frac{n}{n+1} \rightarrow 1$
since $\lim _{n \rightarrow \infty} \frac{\ln (n+1)}{\ln n}=($ L'H.R. $)=\lim _{x \rightarrow \infty} \frac{\frac{1}{x+1}}{\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{x}{x+1}=1 \quad R=1$
and the series is abs.convergent on $(0,2)$
for $x=2 \quad \sum_{n=2}^{\infty} \frac{\sqrt{\ln n}}{n}$ is divergent by Integral Test: $\int_{2}^{\infty} \frac{\sqrt{\ln x}}{x} d x=\left[\frac{2}{3}(\ln x)^{\frac{3}{2}}\right]_{2}^{\infty}=\infty$
since $\lim _{x \rightarrow \infty} \ln x=+\infty$
and also
$f(x)=\frac{\sqrt{\ln x}}{x}$ is decreasing since $f^{\prime}(x)=\left(\frac{\sqrt{\ln x}}{x}\right)^{\prime}=\frac{\frac{1}{2 \sqrt{\ln x}}-\sqrt{\ln x}}{x^{2}}=\frac{1-2 \ln x}{2 x^{2} \sqrt{\ln x}}<0$ for $x \geq 2$
for $x=0 \quad \sum_{n=2}^{\infty} \frac{\sqrt{\ln n}}{n}(-1)^{n}$ is cond.convergent by Alt.Test since from above the sequence $a_{n}=$ $\frac{\sqrt{\ln n}}{n}$
is decreasing and $\lim _{n \rightarrow \infty} \frac{\sqrt{\ln n}}{n}=\lim _{x \rightarrow \infty} \frac{1}{2 \sqrt{\ln x}} \cdot \frac{1}{x}=0$
and interval of cinvergence is $[0,2)$.
3. $\sum_{n=1}^{\infty} \frac{1}{n}=\infty$.by Intergral Test:

$$
f(x)=\frac{1}{x} \text { is decr.and positve for } x \geq 1, f^{\prime}(x)=\frac{-1}{x^{2}}<0
$$

and $\int_{1}^{\infty} \frac{1}{x} d x=\lim _{x \rightarrow \infty} \ln x-\ln 1=+\infty$
4. Find the sum of

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 4^{n}}{(2 n)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n+1} 4^{n}}{(2 n)!}-(n=0)=\sum_{n=0}^{\infty} \frac{(-1)^{n+1} 4^{n}}{(2 n)!}-(-1)=1-
$$ $\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{2 n}}{(2 n)!}=1-\cos 2$.

5. the Taylor series for $f(x)=x+e^{x}=\sum_{n=0}^{\infty} a_{n}(x+1)^{n}$
set $t=x+1 \quad x=t-1$
$x+e^{x}=t-1+e^{t-1}=-1+t+\frac{1}{e} \sum_{n=0}^{\infty} \frac{t^{n}}{n!}=-1+t+\frac{1}{e}+\frac{1}{e} t+\frac{1}{e} \sum_{n=2}^{\infty} \frac{t^{n}}{n!}=$
$=\left(-1+\frac{1}{e}\right)+t\left(1+\frac{1}{e}\right)+\sum_{n=2}^{\infty} \frac{1}{e n!}(x+1)^{n}$ for any $x ., a_{n}=\frac{1}{e n!}$ for $n \geq 2$
ALSO
we know that $a_{0}=f(-1)=-1+\frac{1}{e}$ and $a_{1}=f^{\prime}(-1)=1+\frac{1}{e}$
since $f^{\prime}(x)=1+e^{x}$ and all $f^{(n)}(x)=e^{x}$ so $a_{n}=\frac{e^{-1}}{n!}$ for $n \geq 2$.
6. For $\quad \mathbf{r}(t)=\left(\cos (2 t), \sin (2 t), 3 t^{2}\right) \quad \mathbf{r}^{\prime}(t)=(-2 \sin (2 t), 2 \cos (2 t), 6 t)$
(a) for the point $P(1,0,0) \quad t=0 \quad \mathbf{d}=\mathbf{r}^{\prime}(0)=(0,2,0)$ or $(0,1,0)$
and the tangent is given by
$(x, y, z)=(1,0,0)+t(0,1,0)$ OR $x=1, y=t, z=0$
(b) for the point $R\left(-1,0, \frac{3}{4} \pi^{2}\right) \quad t=\frac{\pi}{2}$
$\left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{4 \sin ^{2}(2 t)+4 \cos ^{2}(2 t)+36 t^{2}}=\sqrt{4+36 t^{2}}=2 \sqrt{1+9 t^{2}}$
then

$$
\begin{aligned}
& l=\int_{0}^{\frac{\pi}{2}}\left\|\mathbf{r}^{\prime}(t)\right\| d t=2 \int_{0}^{\frac{\pi}{2}} \sqrt{1+9 t^{2}} d t=(\text { subst. } u=3 t, d u=3 d t)=\frac{2}{3} \int_{0}^{\frac{3}{2} \pi} \sqrt{1+u^{2}} d u= \\
& =\frac{1}{3}\left[u \sqrt{1+u^{2}}+\ln \left(u+\sqrt{1+u^{2}}\right]_{0}^{\frac{3}{2} \pi}=\frac{\pi}{2} \sqrt{1+\frac{9}{4} \pi^{2}}+\frac{1}{3} \ln \left(\frac{3}{2} \pi+\sqrt{1+\frac{9}{4} \pi^{2}}\right)\right.
\end{aligned}
$$

