The University of Calgary
Department of Mathematics and Statistics
MATH 349 Lecture 01/ 02
Quiz \# 1R
Fall 2008
Name: \qquad I.D. \#: \qquad

1. Find the limit of the sequence $a_{n}=n-5^{n}$.
2. Is the sequence $\left\{a_{n}\right\}$ ultimately monotonic ,bounded,alternating, convergent?

Explain; find the limit, an upper and a lower bounds

$$
\begin{align*}
& \text { (a) } a_{n}=\frac{(-1)^{n} n}{\ln \left(n^{2}+1\right)} ; \\
& \text { (b) } a_{n}=\frac{n^{2}}{1+n^{3}} \tag{7}
\end{align*}
$$

SOLUTION

For 1)
$\lim _{n \rightarrow \infty}\left(n-5^{n}\right)=" \infty-\infty "=\lim _{n \rightarrow \infty} 5^{n}\left(\frac{n}{5^{n}}-1\right)=\infty(-1)=-\infty \quad$ since $\lim _{x \rightarrow \infty} \frac{x}{5^{x}}=$ $\left(L^{\prime} H . R.\right)=\lim _{x \rightarrow \infty} \frac{1}{5^{x}(\ln 5)}=0$

For2a)

the sequence $a_{n}=\frac{(-1)^{n} n}{\ln \left(n^{2}+1\right)}$ is alternating thus NOT monotonic
for n even: $\quad \lim _{n \rightarrow \infty} \frac{n}{\ln \left(n^{2}+1\right)}=" \frac{\infty}{\infty} "(l . H . R)=\lim _{x \rightarrow \infty} \frac{1}{\frac{2 x}{x^{2}+1}}=\lim _{x \rightarrow \infty} \frac{x^{2}+1}{2 x}=($
again $)=\lim _{x \rightarrow \infty} \frac{2 x}{2}=+\infty$
for n odd: $\quad \lim _{n \rightarrow \infty} \frac{-n}{\ln \left(n^{2}+1\right)}=" \frac{\infty}{\infty} "(l . H . R)=\lim _{x \rightarrow \infty} \frac{-1}{\frac{2 x}{x^{2}+1}}=\lim _{x \rightarrow \infty}-\frac{x^{2}+1}{2 x}=($
again $)=\lim _{x \rightarrow \infty}-\frac{2 x}{2}=-\infty$
yhus the sequence isdivergent neither bounded above nor below
For 2b)
$a_{n}=\frac{n^{2}}{1+n^{3}}>0 \quad \lim _{n \rightarrow \infty} \frac{n^{2}}{1+n^{3}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{\frac{1}{n^{3}}+1}=0$ convergent
for monotonicity : $\quad f^{\prime}(x)=\left(\frac{x^{2}}{1+x^{3}}\right)^{\prime}=\frac{2 x\left(1+x^{3}\right)-x^{2} \cdot 3 x^{2}}{\left(1+x^{3}\right)^{2}}=\frac{2 x-x^{4}}{\left(1+x^{3}\right)^{2}}=$ $\frac{x\left(2-x^{3}\right)}{\left(1+x^{3}\right)^{2}}<0$
for $n \geq 2 \quad$ so the sequence is ult. decreasing
the best upper bound is $\quad a_{1}=\frac{1}{2}>a_{2}=\frac{4}{9}$
the best lower bound is 0 .

