The University of Calgary
 Department of Mathematics and Statistics
 MATH 349 Lecture 01/ 02
 Quiz \# 1T

Fall 2008
Name: \qquad I.D. \#: \qquad

1. Find the limit of the sequence $a_{n}=\left(2+n^{2}\right)^{\frac{1}{n}}$.
2. Is the sequence $\left\{a_{n}\right\}$ ultimately monotonic ,bounded,alternating, convergent? Explain, find the limit, an upper and a lower bound
(a) $\quad a_{n}=\frac{(-1)^{n} 2^{n}}{3^{n}+1}$;
(b) $\quad a_{n}=\frac{n}{1+\sqrt{n}}$

SOLUTION

For1)

$a_{n}=\left(2+n^{2}\right)^{\frac{1}{n}}=e^{\frac{1}{n} \ln \left(2+n^{2}\right)}$
$\lim _{x \rightarrow \infty} \frac{\ln \left(2+x^{2}\right)}{x}=\left(L^{\prime} H\right.$.R.twice) $\lim _{x \rightarrow \infty} \frac{\frac{2 x}{2+x^{2}}}{1}=\lim _{x \rightarrow \infty} \frac{2}{2 x}=0$
so $\lim _{n \rightarrow \infty} a_{n}=e^{0}=1$.

For 2a)

it an alternating sequence thus NOT momotonic since $a_{n}= \pm \frac{2^{n}}{3^{n}+1}$
we can estimate $\left|a_{n}\right| \leq \frac{2^{n}}{3^{n}+1} \leq\left(\frac{2}{3}\right)^{n} \rightarrow 0$ since it is a geom sequ, with $r=\frac{2}{3}<1$
therefore by Squ.Th also $\left\{a_{n}\right\}$ is convergent to 0
lower bond .. $-1 \leq \frac{-2^{n}}{3^{n}+1} \leq a_{n} \leq \frac{2^{n}}{3^{n}+1} \leq 1$.. upper bound

For 2b)

$a_{n}=\frac{n}{1+\sqrt{n}} \geq 0$..lower bound $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{n}{1+\sqrt{n}}=\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\frac{1}{\sqrt{n}}+1}=+\infty$ or L'H.R.
so NO upper bound and the sequ. is divergent to ∞
for monotonicity $f^{\prime}(x)=\left(\frac{x}{1+\sqrt{x}}\right)^{\prime}=\frac{1+\sqrt{x}-x \cdot \frac{1}{2 \sqrt{x}}}{(1+\sqrt{x})^{2}}=\frac{1+\frac{1}{2} \sqrt{x}}{(1+\sqrt{x})^{2}}>0$
so the sequ. is increasing

