MATH 349 Solutions To Quiz \# 2 (Thursday)

1. (a) $\sum_{n=1}^{\infty} \frac{3^{n}(n!)^{2}}{(2 n)!}$

Obviously the series is of positive terms.
Here $a_{n}=\frac{3^{n}(n!)^{2}}{(2 n)!}$,
$a_{n+1}=\frac{3^{n+1}[(n+1)!]^{2}}{(2 n+2)!}=\frac{3 \cdot 3^{n}[(n+1) n!]^{2}}{(2 n+2)(2 n+1)(2 n)!}=\frac{3 \cdot 3^{n}(n+1)^{2}(n!)^{2}}{2(n+1)(2 n+1)(2 n)!}=\frac{3 \cdot 3^{n}(n+1)(n!)^{2}}{2(2 n+1)(2 n)!}$
Therefore,$\frac{a_{n+1}}{a_{n}}=\frac{3 \cdot 3^{n}(n+1)(n!)^{2}}{2(2 n+1)(2 n)!} \cdot \frac{(2 n)!}{3^{n}(n!)^{2}}=\frac{3(n+1)}{2(2 n+1)}$
Now $L=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{3(n+1)}{2(2 n+1)}=\frac{3}{2} \lim _{n \rightarrow \infty} \frac{n+1}{2 n+1}=\frac{3}{2} \cdot \frac{1}{2}=\frac{3}{4}$
Note: You may use L' Hôpital's Rule to Compute the limit above !
Since $L=\frac{3}{4}<1$, the series Converges.
(b) $\sum_{n=1}^{\infty} \frac{e^{-\sqrt{n}}}{\sqrt{n}}$ Here $a_{n}=\frac{e^{-\sqrt{n}}}{\sqrt{n}}, \quad n \geq 1$

Let $a_{n}=f(n)$, hence $f(x)=\frac{e^{-\sqrt{x}}}{\sqrt{x}}, x \geq 1$.
Clearly $f(x)$ is Positive, and is Continuous. Further more $f(x)$
is strictly decreasing on the interval $[1, \infty)$. This is because

$$
f^{\prime}(x)=\frac{\sqrt{x} e^{-\sqrt{x}}\left(-\frac{1}{2 \sqrt{x}}\right)-e^{-\sqrt{x}}\left(\frac{1}{2 \sqrt{x}}\right)}{(\sqrt{x})^{2}}=-\frac{e^{-\sqrt{x}}\left(1+\frac{1}{\sqrt{x}}\right)}{2 x}<0, \text { for } x \geq 1
$$

It follow That All Three Conditions of the Integral Test are Satisfied.
Now, consider the Improper Integral $J=\int_{1}^{\infty} f(x) d x=\int_{1}^{\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}} d x$.

$$
\begin{equation*}
J=\lim _{R \rightarrow \infty} \int_{1}^{R} \frac{e^{-\sqrt{x}}}{\sqrt{x}} d x \tag{1}
\end{equation*}
$$

Consider the indefinite integral $\int \frac{e^{-\sqrt{x}}}{\sqrt{x}} d x$.

Using the Substitution $u=-\sqrt{x}$, we have $d u=-\frac{1}{2 \sqrt{x}} d x$, or $\frac{1}{\sqrt{x}} d x=-2 d u$. It follows that $\int \frac{e^{-\sqrt{x}}}{\sqrt{x}} d x .=\int e^{-\sqrt{x}}\left(\frac{1}{\sqrt{x}} d x\right)=-2 \int e^{u} d u=-2 e^{u}=-2 e^{-\sqrt{x}}$
Note : No need for arbitrary constant since integral J is definite.
Therefore (1) becomes
$J=-2 \lim _{R \rightarrow \infty}\left[e^{-\sqrt{x}}\right]_{x=1}^{x=R}=-2 \lim _{R \rightarrow \infty}\left(e^{-\sqrt{R}}-e^{-1}\right)=-2\left(0-\frac{1}{e}\right)=\frac{2}{e}<\infty$
Hence the improper integral J converges and so does the given series.
(c) $\sum_{n=1}^{\infty} \frac{\ln (n)}{n+\ln (n)}$

Note first that $\frac{\ln (n)}{n+\ln (n)}>0$, for $n \geq 2$.
Let $a_{n}=\frac{\ln (n)}{n+\ln (n)}$.
For $n \geq 3$, we have

$$
\begin{equation*}
\ln (n)>1 \tag{*}
\end{equation*}
$$

On the other hand, we have

$$
\ln (n)<n
$$

Adding n to each side, we have

$$
n+\ln (n)<n+n=2 n
$$

Hence

$$
\begin{equation*}
\frac{1}{n+\ln (n)}>\frac{1}{2 n} \tag{**}
\end{equation*}
$$

It follows from (*), and (**) that

$$
a_{n}=\frac{\ln (n)}{n+\ln (n)}>\frac{1}{2 n}=b_{n}, \quad n \geq 3 .
$$

But $\sum b_{n}=\frac{1}{2} \sum \frac{1}{n}$ is a $P-$ Series with $P=1$, hence it Diverges.
Note : The constant Multiple does not affect convergence or divergence of the series.
Therefore by Comparison Test, the given series $\sum_{n=1}^{\infty} \frac{\ln (n)}{n+\ln (n)}$ Diverges as well.
2. $\sum_{n=3}^{\infty} \frac{\sin ^{2}(n)}{n \sqrt{n}}$

Let $\quad a_{n}=\frac{\sin ^{2}(n)}{n \sqrt{n}}, n \geq 3$.

Obviously $0<\sin ^{2}(n)<1$, for $n \geq 3$.
It follows that $a_{n}=\frac{\sin ^{2}(n)}{n \sqrt{n}}<\frac{1}{n \sqrt{n}}=b_{n} \quad, n \geq 3$.
But $\sum \frac{1}{n \sqrt{n}}=\sum \frac{1}{n^{3 / 2}}$ is a $P-$ Series with $P=\frac{3}{2}>1$, hence it Converges.
Therefore by the Comparison Test the given series $\sum_{n=3}^{\infty} \frac{\sin ^{2}(n)}{n \sqrt{n}}$ Converges as well.
3. $\sum_{n=1}^{\infty} \frac{3^{n+1}}{8^{\frac{2 n}{3}}}$.

Note first that $8^{\frac{2}{3}}=(\sqrt[3]{8})^{2}=2^{2}=4$, hence $8^{\frac{2 n}{3}}=\left(8^{\frac{2}{3}}\right)^{n}=(4)^{n}=4^{n}$
Series Becomes $\sum_{n=1}^{\infty} \frac{3^{n+1}}{4^{n}}$
To find the sum \mathbf{S}, we have few options :

$$
\text { Option 1 : } \quad \sum_{n=1}^{\infty} \frac{3^{n+1}}{4^{n}}=\sum_{n=1}^{\infty} \frac{3.3^{n}}{4^{n}}=3 \sum_{n=1}^{\infty} \frac{3^{n}}{4^{n}}=3 \sum_{n=1}^{\infty}\left(\frac{3}{4}\right)^{n}
$$

Obviously the series is Geometric with common ratio

$$
r=\frac{3}{4}<1 \quad \text { (it Converges!) }
$$

Using the sum formula : $a \sum_{n=n_{0}}^{\infty} r^{n}=a \frac{r^{n_{0}}}{1-r}$ with $a=3, r=\frac{3}{4}$, and $n_{0}=1$, we have

$$
\mathbf{S}=3 \cdot \frac{\left(\frac{3}{4}\right)^{1}}{1-\frac{3}{4}}=3 \cdot \frac{\frac{3}{4}}{\frac{1}{4}}=3 \cdot \frac{3}{4} \cdot \frac{4}{1}=9
$$

Option 2 :

$$
\sum_{n=1}^{\infty} \frac{3^{n+1}}{4^{n}}=\frac{9}{4}+\frac{27}{16}+\frac{81}{64}+\ldots
$$

Obviously the series is Geometric with first term $a=\frac{9}{4}$, and common ratio

$$
r=\frac{a_{2}}{a_{1}}=\frac{\frac{27}{16}}{\frac{9}{4}}=\frac{27}{16} \cdot \frac{4}{9}=\frac{3}{4}<1
$$

hence series converges and its sum \mathbf{S} is given by

$$
\mathbf{S}=\frac{a}{1-r}=\frac{\frac{9}{4}}{1-\frac{3}{4}}=\frac{\frac{9}{4}}{\frac{1}{4}}=\frac{9}{4} \cdot \frac{4}{1}=9 .
$$

