1. (a)
$$\sum_{n=1}^{\infty} \frac{3^n (n!)^2}{(2n)!}$$

Obviously the series is of positive terms.

Here
$$a_n = \frac{3^n (n!)^2}{(2n)!}$$
,
 $a_{n+1} = \frac{3^{n+1}[(n+1)!]^2}{(2n+2)!} = \frac{3 \cdot 3^n [(n+1)n!]^2}{(2n+2)(2n+1)(2n)!} = \frac{3 \cdot 3^n (n+1)^2 (n!)^2}{2(n+1)(2n+1)(2n)!} = \frac{3 \cdot 3^n (n+1)(n!)^2}{2(2n+1)(2n)!}$
Therefore, $\frac{a_{n+1}}{a_n} = \frac{3 \cdot 3^n (n+1)(n!)^2}{2(2n+1)(2n)!} \cdot \frac{(2n)!}{3^n (n!)^2} = \frac{3(n+1)}{2(2n+1)}$

Now
$$L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{3(n+1)}{2(2n+1)} = \frac{3}{2} \lim_{n \to \infty} \frac{n+1}{2n+1} = \frac{3}{2} \cdot \frac{1}{2} = \frac{3}{4}$$

Note : You may use L' Hôpital's Rule to Compute the limit above !

Since $L = \frac{3}{4} < 1$, the series **Converges**. (b) $\sum_{n=1}^{\infty} \frac{e^{-\sqrt{n}}}{n}$ Here $a = \frac{e^{-\sqrt{n}}}{n}$ $n \ge 1$

(b)
$$\sum_{n=1}^{\infty} \frac{e^{-\sqrt{n}}}{\sqrt{n}}$$
 Here $a_n = \frac{e^{-\sqrt{n}}}{\sqrt{n}}$, $n \ge 1$
Let $a_n = f(n)$, hence $f(x) = \frac{e^{-\sqrt{x}}}{\sqrt{x}}$, $x \ge 1$.

Clearly f(x) is **Positive**, and is **Continuous**. Further more f(x) is strictly **decreasing** on the interval $[1, \infty)$. This is because

$$f'(x) = \frac{\sqrt{x} e^{-\sqrt{x}} \left(-\frac{1}{2\sqrt{x}}\right) - e^{-\sqrt{x}} \left(\frac{1}{2\sqrt{x}}\right)}{(\sqrt{x})^2} = -\frac{e^{-\sqrt{x}} \left(1 + \frac{1}{\sqrt{x}}\right)}{2 x} < 0, \text{ for } x \ge 1.$$

It follow That All Three Conditions of the Integral Test are Satisfied.

Now , consider the Improper Integral $J = \int_{1}^{\infty} f(x) dx = \int_{1}^{\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}} dx.$

$$J = \lim_{R \to \infty} \int_{1}^{R} \frac{e^{-\sqrt{x}}}{\sqrt{x}} dx$$
(1)

Consider the indefinite integral $\int \frac{e^{-\sqrt{x}}}{\sqrt{x}} dx$.

Using the Substitution $u = -\sqrt{x}$, we have $du = -\frac{1}{2\sqrt{x}} dx$, or $\frac{1}{\sqrt{x}} dx = -2 du$. It follows that $\int \frac{e^{-\sqrt{x}}}{\sqrt{x}} dx = \int e^{-\sqrt{x}} \left(\frac{1}{\sqrt{x}} dx\right) = -2\int e^{u} du = -2 e^{u} = -2 e^{-\sqrt{x}}$

Note : No need for arbitrary constant since integral J is definite.

Therefore (1) becomes

$$J = -2 \lim_{R \to \infty} \left[e^{-\sqrt{x}} \right]_{x=1}^{x=R} = -2 \lim_{R \to \infty} \left(e^{-\sqrt{R}} - e^{-1} \right) = -2 \left(0 - \frac{1}{e} \right) = \frac{2}{e} < \infty$$

Hence the improper integral J converges and so does the given series.

(c)
$$\sum_{n=1}^{\infty} \frac{\ln(n)}{n + \ln(n)}$$

Note first that $\frac{\ln(n)}{n + \ln(n)} > 0$, for $n \ge 2$.
Let $a_n = \frac{\ln(n)}{n + \ln(n)}$.
For $n \ge 3$, we have

 $\ln(n) > 1$ (*)

On the other hand , we have

$$\ln(n) < n$$

Adding n to each side, we have

$$n + \ln(n) < n + n = 2n$$

Hence

$$\frac{1}{n+\ln(n)} > \frac{1}{2n} \qquad (**)$$

It follows from (*) , and (* *) that

$$a_n = \frac{\ln(n)}{n + \ln(n)} > \frac{1}{2n} = b_n , \quad n \ge 3.$$

But $\sum b_n = \frac{1}{2} \sum \frac{1}{n}$ is a *P*-Series with *P* = 1, hence it **Diverges**.

Note : The constant Multiple does not affect convergence or divergence of the series.

Therefore by **Comparison Test**, the given series $\sum_{n=1}^{\infty} \frac{\ln(n)}{n + \ln(n)}$ **Diverges** as well.

2.
$$\sum_{n=3} \frac{\sin^2(n)}{n\sqrt{n}}$$

Let
$$a_n = \frac{\sin^2(n)}{n\sqrt{n}}$$
, $n \ge 3$

Obviously $0 < \sin^2(n) < 1$, for $n \ge 3$.

It follows that $a_n = \frac{\sin^2(n)}{n\sqrt{n}} < \frac{1}{n\sqrt{n}} = b_n$, $n \ge 3$. But $\sum \frac{1}{n\sqrt{n}} = \sum \frac{1}{n^{3/2}}$ is a *P*-Series with $P = \frac{3}{2} > 1$, hence it **Converges**. Therefore by the **Comparison Test** the given series $\sum_{n=3}^{\infty} \frac{\sin^2(n)}{n\sqrt{n}}$ **Converges** as well.

3.
$$\sum_{n=1}^{\infty} \frac{3^{n+1}}{8^{\frac{2n}{3}}}$$
.

Note first that $8^{\frac{2}{3}} = (\sqrt[3]{8})^2 = 2^2 = 4$, hence $8^{\frac{2n}{3}} = (8^{\frac{2}{3}})^n = (4)^n = 4^n$ Series Becomes $\sum_{n=1}^{\infty} \frac{3^{n+1}}{n}$

Series Becomes $\sum_{n=1}^{\infty} \frac{3^{n+1}}{4^n}$

To find the sum S , we have few options :

Option 1:
$$\sum_{n=1}^{\infty} \frac{3^{n+1}}{4^n} = \sum_{n=1}^{\infty} \frac{3 \cdot 3^n}{4^n} = 3 \sum_{n=1}^{\infty} \frac{3^n}{4^n} = 3 \sum_{n=1}^{\infty} \left(\frac{3}{4}\right)^n$$

Obviously the series is Geometric with common ratio

$$r = \frac{3}{4} < 1$$
 (it Converges!)

Using the sum formula : $a \sum_{n=n_0}^{\infty} r^n = a \frac{r^{n_0}}{1-r}$ with a = 3, $r = \frac{3}{4}$, and $n_0 = 1$, we have $\mathbf{S} = 3. \ \frac{\left(\frac{3}{4}\right)^1}{1-\frac{3}{4}} = 3. \ \frac{\frac{3}{4}}{\frac{1}{4}} = 3. \ \frac{3}{4}. \ \frac{4}{1} = 9$ $\underbrace{\mathbf{Option 2}}_{n=1}^{\infty} : \sum_{n=1}^{\infty} \frac{3^{n+1}}{4^n} = \frac{9}{4} + \frac{27}{16} + \frac{81}{64} + \dots$

Obviously the series is Geometric with first term $a = \frac{9}{4}$, and common ratio

$$r = \frac{a_2}{a_1} = \frac{\frac{27}{16}}{\frac{9}{4}} = \frac{27}{16} \cdot \frac{4}{9} = \frac{3}{4} < 1 ,$$

hence series converges and its sum S is given by

$$\mathbf{s} = \frac{a}{1-r} = \frac{\frac{9}{4}}{1-\frac{3}{4}} = \frac{\frac{9}{4}}{\frac{1}{4}} = \frac{9}{4} \cdot \frac{4}{1} = 9.$$
END