MATH 349 Solutions To Quiz # 2 (Thursday)
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Obviously the series is of positive terms.
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Note : You may use L’ Hopital’'s Rule to Compute the limit above !

Since L = % < 1, the series Converges.

S _ e >
(b)EﬁHerean o n>1

Let a, =f(n), hence f(x) =
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, x> 1.

Clearly f(x) is Positive, and is Continuous. Further more f(x)

is strictly decreasing on the interval [1 , «). This is because
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It follow That All Three Conditions of the Integral Test are Satisfied.
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Consider the indefinite integral I e .
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Now , consider the Improper Integral J = J‘lm f(x) dx = jlm eIt
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Using the Substitution « =-/x , we have du = - 257 dx, or % dx = -2 du.
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Note : No need for arbitrary constant since integral J is definite.

Therefore (1) becomes
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Hence the improper integral J converges and so does the given series.
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>0, forn > 2.
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For n >3, we have
In(n) > 1 (*)
On the other hand , we have
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Adding n to each side , we have

n+ln(n) <n+n=2n
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It follows from (*) , and (* *) that

SO T F

n —

n+lIn(n) = 2n

But ) b, = % > % is a P — Series with P = 1, hence it Diverges.

Note : The constant Multiple does not affect convergence or divergence of the series.
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Therefore by Comparison Test , the given series Zf FEST) Diverges as well.
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Obviously 0 <sin?(n) < 1, forn > 3.

s .2
It follows that a, = S 1 _, 53
W at a nﬁ<nﬁ b, ,n=3

But > n}ﬁ =y n%/z is a P — Series With P = % > 1, hence it Converges.
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Series Becomes ), 3:;1
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To find the sum S, we have few options :
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Option 1 : > T
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Obviously the series is Geometric with common ratio

- % <1 (it Converges!)

Using the sum formula: a ) r*=a lrior with a=3,r= % ,and no = 1, we have
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Obviously the series is Geometric with first term a = % , and common ratio
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hence series converges and its sum S is given by
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