
MATH 349 Solutions To Quiz # 2 (Thursday)

1. (a)

n=1

∞

∑
3n(n!)2

(2n)!

Obviously the series is of positive terms.

Here an =
3n(n!)2

(2n)!
,

an+1 =
3n+1[(n + 1)!]2

(2n + 2)!
=

3. 3n[(n + 1)n!]2

(2n + 2)(2n + 1)(2n)!
=

3. 3n(n + 1)2(n!)2

2(n + 1)(2n + 1)(2n)!
=

3. 3n(n + 1)(n!)2

2(2n + 1)(2n)!

Therefore , an+1

an
=

3. 3n(n + 1)(n!)2

2(2n + 1)(2n)!
.

(2n)!

3n(n!)2
=

3(n + 1)

2(2n + 1)

Now L =
n → ∞

lim
an+1

an
=

n → ∞

lim
3(n + 1)

2(2n + 1)
= 3

2 n → ∞

lim n + 1
2n + 1

= 3
2

. 1
2

= 3
4

Note : You may use L’ Hôpital’s Rule to Compute the limit above !

Since L = 3
4

< 1 , the series Converges.

(b)

n=1

∞

∑ e− n

n
Here an = e− n

n
, n ≥ 1

Let an = f (n) , hence f (x) = e− x

x
, x ≥ 1.

Clearly f (x) is Positive , and is Continuous. Further more f (x)

is strictly decreasing on the interval [1 , ∞). This is because

f
′
(x) =

x e− x − 1

2 x
− e− x 1

2 x

( x )2
= −

e− x 1 + 1

x

2 x
< 0 , for x ≥ 1.

It follow That All Three Conditions of the Integral Test are Satisfied.

Now , consider the Improper Integral J = ∫1

∞
f (x) dx = ∫1

∞ e− x

x
dx.

J =
R → ∞

lim ∫1

R e− x

x
dx (1)

Consider the indefinite integral ∫ e− x

x
dx.



Using the Substitution u = − x , we have du = − 1

2 x
dx , or 1

x
dx = − 2 du.

It follows that ∫ e− x

x
dx. = ∫ e− x 1

x
dx = −2 ∫ eu du = −2 eu = −2 e− x

Note : No need for arbitrary constant since integral J is definite.

Therefore (1) becomes

J = − 2
R → ∞

lim [ e− x ]x=1
x=R = − 2

R → ∞

lim ( e− R − e−1) = − 2 (0 − 1
e ) = 2

e < ∞

Hence the improper integral J converges and so does the given series.

(c)

n=1

∞

∑
ln(n)

n + ln(n)

Note first that
ln(n)

n + ln(n)
> 0 , for n ≥ 2.

Let an =
ln(n)

n + ln(n)
.

For n ≥ 3, we have

ln(n) > 1 (∗)

On the other hand , we have

ln(n) < n

Adding n to each side , we have

n + ln(n) < n + n = 2n

Hence 1
n + ln(n)

> 1
2n

(∗ ∗)

It follows from (∗) , and (∗ ∗) that

an =
ln(n)

n + ln(n)
> 1

2n
= bn , n ≥ 3.

But ∑ bn = 1
2 ∑

1
n is a P − Series with P = 1 , hence it Diverges.

Note : The constant Multiple does not affect convergence or divergence of the series.

Therefore by Comparison Test , the given series

n=1

∞

∑
ln(n)

n + ln(n)
Diverges as well.

2.

∞

n=3

∑
sin2(n)

n n

Let an =
sin2(n)

n n
, n ≥ 3.



Obviously 0 < sin2(n) < 1 , for n ≥ 3.

It follows that an =
sin2(n)

n n
< 1

n n
= bn , n ≥ 3.

But ∑ 1

n n
= ∑ 1

n3/2
is a P − Series with P = 3

2
> 1, hence it Converges.

Therefore by the Comparison Test the given series
∞

n=3

∑
sin2(n)

n n
Converges as well.

3.
∞

n=1

∑ 3n+1

8
2n
3

.

Note first that 8
2

3 = 3 8
2

= 22 = 4, hence 8
2n
3 = 8

2

3

n

= (4)n = 4n

Series Becomes
∞

n=1

∑ 3n+1

4n

To find the sum S , we have few options :

Option 1 :
∞

n=1

∑ 3n+1

4n =
∞

n=1

∑ 3. 3n

4n = 3
∞

n=1

∑ 3n

4n = 3
∞

n=1

∑ 3
4

n

Obviously the series is Geometric with common ratio

r = 3
4

< 1 ( it Converges!)

Using the sum formula : a
∞

n=n0

∑ rn = a rn0

1 − r
with a = 3 , r = 3

4
, and n0 = 1 , we have

S = 3.

3
4

1

1 − 3
4

= 3.

3
4
1
4

= 3. 3
4

. 4
1

= 9

Option 2 :
∞

n=1

∑ 3n+1

4n = 9
4

+ 27
16

+ 81
64

+. . .

Obviously the series is Geometric with first term a = 9
4

, and common ratio

r =
a2

a1
=

27
16
9
4

= 27
16

. 4
9

= 3
4

< 1 ,

hence series converges and its sum S is given by

S = a
1 − r

=

9
4

1 − 3
4

=

9
4
1
4

= 9
4

. 4
1

= 9.

END


