MATH 349

Solutions To Quiz # 2 (Tuesday)

1. (a)
$$\sum_{n=1}^{\infty} \frac{n^n}{e^{2n} n!}$$

Obviously the series is of positive terms.

Here
$$a_n = \frac{n^n}{e^{2n}n!}$$
, $a_{n+1} = \frac{(n+1)^{n+1}}{e^{2(n+1)}(n+1)!} = \frac{(n+1)(n+1)^n}{e^2e^{2n}(n+1)n!} = \frac{(n+1)^n}{e^2e^{2n}n!}$

Therefore,
$$\frac{a_{n+1}}{a_n} = \frac{(n+1)^n}{e^2 e^{2n} n!} \cdot \frac{e^{2n} n!}{n^n} = \frac{1}{e^2} \frac{(n+1)^n}{n^n} = \frac{1}{e^2} \left(\frac{n+1}{n}\right)^n = \frac{1}{e^2} \left(1 + \frac{1}{n}\right)^n$$

Now
$$L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{1}{e^2} \left(1 + \frac{1}{n} \right)^n = \frac{1}{e^2} \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \frac{1}{e^2}.$$
 $e = \frac{1}{e}$

Note: $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$ or you may use L' Hôpital's Rule to Compute it.

Since $L = \frac{1}{e} < 1$, the series **Converges**.

(b)
$$\sum_{n=1}^{\infty} n e^{-n^2}$$

Here $a_n = n e^{-n^2}$, $n \ge 1$

Let $a_n = f(n)$, hence $f(x) = x e^{-x^2}$, $x \ge 1$.

Clearly f(x) is **Positive**, and is **Continuous**. Further more f(x)

is strictly **decreasing** on the interval $[1, \infty)$. This is because

$$f'(x) = 1.e^{-x^2} + x e^{-x^2}(-2x) = e^{-x^2}(1 - 2x^2) < 0$$
, for $x \ge 1$.

It follow That All Three Conditions of the Integral Test are Satisfied.

Now , consider the Improper Integral $J = \int_1^\infty f(x) \ dx = \int_1^\infty x \ e^{-x^2} \ dx$.

$$J = \lim_{R \to \infty} \int_{1}^{R} x \, e^{-x^2} \, dx \tag{1}$$

Consider the indefinite integral $\int x e^{-x^2} dx$.

Using the Substitution $u=-x^2$, we have $du=-2x\ dx$, or $x\ dx=-\frac{1}{2}\ du$.

It follows that
$$\int x e^{-x^2} dx = -\frac{1}{2} \int e^u du = -\frac{1}{2} e^u = -\frac{1}{2} e^{-x^2}$$

Note: No need for arbitrary constant since integral J is definite.

Therefore (1) becomes

$$J = -\frac{1}{2} \lim_{R \to \infty} \left[e^{-x^2} \right]_{x=1}^{x=R} = -\frac{1}{2} \lim_{R \to \infty} \left(e^{-R^2} - e^{-1} \right) = -\frac{1}{2} \left(0 - \frac{1}{e} \right) = \frac{1}{2e} < \infty$$

Hence the improper integral J converges and so does the given series.

(c)
$$\sum_{n=1}^{\infty} \sin^3\left(\frac{1}{n}\right)$$

Note first that the series is of positive terms since $0 < \frac{1}{n} < 1 < \frac{\pi}{2}$.

Hence $\frac{1}{n}$ belongs to the first Quadrant where the **sine** function is positive

Let
$$a_n = \sin^3\left(\frac{1}{n}\right)$$
.

Recall the Inequality : $\sin(\theta) < \theta$ for all $\theta > 0$.

It follows that
$$a_n = \sin^3\left(\frac{1}{n}\right) = \left[\sin\left(\frac{1}{n}\right)\right]^3 < \left(\frac{1}{n}\right)^3 = \frac{1}{n^3} = b_n$$

But $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n^3}$ is a P-Series with P=3>1, hence it **Converges**,

and so does
$$\sum_{n=1}^{\infty} \sin^3\left(\frac{1}{n}\right)$$
.

$$2. \sum_{n=3}^{\infty} \frac{1}{\ln(\sqrt{n})}$$

First observe that $\ln(\sqrt{n}) = \ln(n^{1/2}) = \frac{1}{2}\ln(n)$. The series becomes

$$\sum_{n=3}^{\infty} \frac{2}{\ln n} = 2 \sum_{n=3}^{\infty} \frac{1}{\ln n}$$

Note: The constant Multiple does not affect **convergence or divergence** of the series.

Hence you may consider the series $\sum_{n=3}^{\infty} \frac{1}{\ln n}$.

Let
$$a_n = \frac{1}{\ln(n)}$$
, $n \ge 3$.

Recall the Inequality $0 < \ln(n) < n$, for $n \ge 2$.

It follows that $a_n = \frac{1}{\ln(n)} > \frac{1}{n} = b_n$, $n \ge 3$.

But $\sum \frac{1}{n}$ is the Well Known Harmonic Series , it **Diverges**.

Therefore by **Comparison Test** the series $\sum_{n=3}^{\infty} \frac{1}{\ln(\sqrt{n})}$ **Diverges** as well.

3.
$$\sum_{n=1}^{\infty} \frac{2^{n+1}}{9^{\frac{n}{2}}}.$$

Note first that $9 = 3^2$. Hence $9^{\frac{n}{2}} = (3^2)^{n/2} = 3^n$

Series Becomes $\sum_{n=1}^{\infty} \frac{2^{n+1}}{3^n}$

To find the sum S, we have few options:

Option 1:
$$\sum_{n=1}^{\infty} \frac{2^{n+1}}{3^n} = \sum_{n=1}^{\infty} \frac{2 \cdot 2^n}{3^n} = 2 \sum_{n=1}^{\infty} \frac{2^n}{3^n} = 2 \sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$$

Obviously the series is Geometric with common ratio

$$r = \frac{2}{3} < 1$$

Using the sum formula : $a\sum_{n=n_0}^{\infty} r^n = a \, \frac{r^{n_0}}{1-r}$ with a=2, $r=\frac{2}{3}$, and $n_0=1$, we have

S = 2.
$$\frac{\left(\frac{2}{3}\right)^1}{1 - \frac{2}{3}} = 2$$
. $\frac{\frac{2}{3}}{\frac{1}{3}} = 2$. $\frac{2}{3}$. $\frac{3}{1} = 4$

Option 2:
$$\sum_{n=1}^{\infty} \frac{2^{n+1}}{3^n} = \frac{4}{3} + \frac{8}{9} + \frac{16}{27} + \dots$$

Obviously the series is Geometric with first term $a = \frac{4}{3}$, and common ratio

$$r = \frac{a_2}{a_1} = \frac{\frac{8}{9}}{\frac{4}{3}} = \frac{8}{9} \cdot \frac{3}{4} = \frac{2}{3} < 1$$
,

hence series converges and its sum S is given by

$$\mathbf{S} = \frac{a}{1-r} = \frac{\frac{4}{3}}{1-\frac{2}{3}} = \frac{\frac{4}{3}}{\frac{1}{3}} = \frac{4}{3} \cdot \frac{3}{1} = 4$$

END