MATH 349

Solutions To Quiz \# 2 (Tuesday)

1. (a) $\sum_{n=1}^{\infty} \frac{n^{n}}{e^{2 n} n!}$

Obviously the series is of positive terms.
Here $\quad a_{n}=\frac{n^{n}}{e^{2 n} n!}, a_{n+1}=\frac{(n+1)^{n+1}}{e^{2(n+1)}(n+1)!}=\frac{(n+1)(n+1)^{n}}{e^{2} e^{2 n}(n+1) n!}=\frac{(n+1)^{n}}{e^{2} e^{2 n} n!}$
Therefore , $\frac{a_{n+1}}{a_{n}}=\frac{(n+1)^{n}}{e^{2} e^{2 n} n!} \cdot \frac{e^{2 n} n!}{n^{n}}=\frac{1}{e^{2}} \frac{(n+1)^{n}}{n^{n}}=\frac{1}{e^{2}}\left(\frac{n+1}{n}\right)^{n}=\frac{1}{e^{2}}\left(1+\frac{1}{n}\right)^{n}$

Now $L=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{1}{e^{2}}\left(1+\frac{1}{n}\right)^{n}=\frac{1}{e^{2}} \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\frac{1}{e^{2}} \cdot e=\frac{1}{e}$
Note : $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e$ or you may use L' Hôpital's Rule to Compute it.
Since $L=\frac{1}{e}<1$, the series Converges.
(b) $\sum_{n=1}^{\infty} n e^{-n^{2}}$

Here $a_{n}=n e^{-n^{2}}, \quad n \geq 1$
Let $a_{n}=f(n)$, hence $f(x)=x e^{-x^{2}}, x \geq 1$.
Clearly $f(x)$ is Positive, and is Continuous. Further more $f(x)$
is strictly decreasing on the interval $[1, \infty)$. This is because

$$
f^{\prime}(x)=1 \cdot e^{-x^{2}}+x e^{-x^{2}}(-2 x)=e^{-x^{2}}\left(1-2 x^{2}\right)<0, \text { for } x \geq 1 .
$$

It follow That All Three Conditions of the Integral Test are Satisfied.
Now, consider the Improper Integral $J=\int_{1}^{\infty} f(x) d x=\int_{1}^{\infty} x e^{-x^{2}} d x$.

$$
\begin{equation*}
J=\lim _{R \rightarrow \infty} \int_{1}^{R} x e^{-x^{2}} d x \tag{1}
\end{equation*}
$$

Consider the indefinite integral $\int x e^{-x^{2}} d x$.
Using the Substitution $u=-x^{2}$, we have $d u=-2 x d x$, or $x d x=-\frac{1}{2} d u$.

It follows that $\int x e^{-x^{2}} d x .=-\frac{1}{2} \int e^{u} d u=-\frac{1}{2} e^{u}=-\frac{1}{2} e^{-x^{2}}$
Note : No need for arbitrary constant since integral J is definite.
Therefore (1) becomes
$J=-\frac{1}{2} \lim _{R \rightarrow \infty}\left[e^{-x^{2}}\right]_{x=1}^{x=R}=-\frac{1}{2} \lim _{R \rightarrow \infty}\left(e^{-R^{2}}-e^{-1}\right)=-\frac{1}{2}\left(0-\frac{1}{e}\right)=\frac{1}{2 e}<\infty$
Hence the improper integral J converges and so does the given series.
(c) $\sum_{n=1}^{\infty} \sin ^{3}\left(\frac{1}{n}\right)$

Note first that the series is of positive terms since $0<\frac{1}{n}<1<\frac{\pi}{2}$.
Hence $\frac{1}{n}$ belongs to the first Quadrant where the sine function is positive Let $a_{n}=\sin ^{3}\left(\frac{1}{n}\right)$.
Recall the Inequality : $\sin (\theta)<\theta$ for all $\theta>0$.
It follows that $a_{n}=\sin ^{3}\left(\frac{1}{n}\right)=\left[\sin \left(\frac{1}{n}\right)\right]^{3}<\left(\frac{1}{n}\right)^{3}=\frac{1}{n^{3}}=b_{n}$
But $\sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ is a $P-$ Series with $P=3>1$, hence it Converges,
and so does $\sum_{n=1}^{\infty} \sin ^{3}\left(\frac{1}{n}\right)$.
2. $\sum_{n=3}^{\infty} \frac{1}{\ln (\sqrt{n})}$

First observe that $\ln (\sqrt{n})=\ln \left(n^{1 / 2}\right)=\frac{1}{2} \ln (n)$. The series becomes

$$
\sum_{n=3}^{\infty} \frac{2}{\ln n}=2 \sum_{n=3}^{\infty} \frac{1}{\ln n}
$$

Note : The constant Multiple does not affect convergence or divergence of the series.

Hence you may consider the series $\sum_{n=3}^{\infty} \frac{1}{\ln n}$.
Let $\quad a_{n}=\frac{1}{\ln (n)}, n \geq 3$.
Recall the Inequality $0<\ln (n)<n$, for $n \geq 2$.

It follows that $a_{n}=\frac{1}{\ln (n)}>\frac{1}{n}=b_{n}, n \geq 3$.
But $\sum \frac{1}{n}$ is the Well Known Harmonic Series, it Diverges.
Therefore by Comparison Test the series $\sum_{n=3}^{\infty} \frac{1}{\ln (\sqrt{n})}$ Diverges as well.
3. $\sum_{n=1}^{\infty} \frac{2^{n+1}}{9^{\frac{n}{2}}}$.

Note first that $9=3^{2}$. Hence $9^{\frac{n}{2}}=\left(3^{2}\right)^{n / 2}=3^{n}$
Series Becomes $\sum_{n=1}^{\infty} \frac{2^{n+1}}{3^{n}}$
To find the sum \mathbf{S}, we have few options :
Option 1 :

$$
\sum_{n=1}^{\infty} \frac{2^{n+1}}{3^{n}}=\sum_{n=1}^{\infty} \frac{2 \cdot 2^{n}}{3^{n}}=2 \sum_{n=1}^{\infty} \frac{2^{n}}{3^{n}}=2 \sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n}
$$

Obviously the series is Geometric with common ratio

$$
r=\frac{2}{3}<1
$$

Using the sum formula : $a \sum_{n=n_{0}}^{\infty} r^{n}=a \frac{r^{n_{0}}}{1-r}$ with $a=2, r=\frac{2}{3}$, and $n_{0}=1$, we have

$$
\mathbf{S}=2 \cdot \frac{\left(\frac{2}{3}\right)^{1}}{1-\frac{2}{3}}=2 \cdot \frac{\frac{2}{3}}{\frac{1}{3}}=2 \cdot \frac{2}{3} \cdot \frac{3}{1}=4
$$

Option 2 : $\quad \sum_{n=1}^{\infty} \frac{2^{n+1}}{3^{n}}=\frac{4}{3}+\frac{8}{9}+\frac{16}{27}+\ldots$
Obviously the series is Geometric with first term $a=\frac{4}{3}$, and common ratio

$$
r=\frac{a_{2}}{a_{1}}=\frac{\frac{8}{9}}{\frac{4}{3}}=\frac{8}{9} \cdot \frac{3}{4}=\frac{2}{3}<1
$$

hence series converges and its sum \mathbf{S} is given by

$$
\mathbf{S}=\frac{a}{1-r}=\frac{\frac{4}{3}}{1-\frac{2}{3}}=\frac{\frac{4}{3}}{\frac{1}{3}}=\frac{4}{3} \cdot \frac{3}{1}=4
$$

END

