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1. Is the series Z (—1)" sin — absolutely or conditionally convergent or divergent?
n

n=1

Explain. 3]

2. Find the centre,radius and interval of convergence of power series
S Bz +1)"
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3. Express f (z) = ———— in powers of (z + 1).
(2x — 1)
On what interval is the representation valid? 4]
Solutions
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First |let’s try abs.convergence Z (—1)"sin — ‘ Z sm —
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a, = sin — is equivalent to b, = — since lim — = lim = lim =1
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and — = 00 so the series is divergent by Limit Comp.Test.
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For co;lditionally convergence let’s investigate the sequence {a,} :

1y’ 1 /-1
limit is 0 and a,, is decreasing since (sin —) = cos — - ( ) <0Oforz>1

x xr \ a2
thus by Alt.Test the original series is cond.convergent
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for the radius
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and the series is absolutely convergent for z € (¢ — R,c+ R) = <_§’ 0)

now for z =0
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we get the series ) == (p= 5 < 1)
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for = —= we get
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and together the series is convergent on {—g, 1)
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set x +1=1 r=t—1 form;éa
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and it is conditionally convergent by Alt.Test,since — \, 0
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