The University of Calgary Department of Mathematics and Statistics MATH 349-01/02 Quiz # 3R

- 1. Is the series $\sum_{n=1}^{\infty} (-1)^n \sin \frac{1}{n}$ absolutely or conditionally convergent or divergent? Explain.
- 2. Find the centre, radius and interval of convergence of power series

$$\sum_{n=1}^{\infty} \frac{(3x+1)^n}{\sqrt{n}} \tag{3}$$

[3]

3. Express $f(x) = \frac{1}{(2x-1)^2}$ in powers of (x+1). On what interval is the representation valid? [4]

Solutions

For1)

First ,let's try abs.convergence
$$\sum_{n=2}^{\infty} \left| (-1)^n \sin \frac{1}{n} \right| = \sum_{n=2}^{\infty} \sin \frac{1}{n}$$

 $a_n = \sin \frac{1}{n}$ is equivalent to $b_n = \frac{1}{n}$ since $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\sin \frac{1}{n}}{\frac{1}{n}} = \lim_{h \to 0} \frac{\sin h}{h} = 1$
and $\sum_{n=1}^{\infty} \frac{1}{n} = \infty$ so the series is divergent by Limit Comp.Test.
For conditionally convergence let's investigate the sequence $\{a_n\}$:
limit is 0 and a_n is decreasing since $\left(\sin \frac{1}{x}\right)' = \cos \frac{1}{x} \cdot \left(\frac{-1}{x^2}\right) < 0$ for $x \ge 1$
thus by Alt.Test the original series is **cond.convergent**
For 2)

$$\sum_{n=1}^{\infty} \frac{(3x+1)^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{3^n (x+\frac{1}{3})^n}{\sqrt{n}} \qquad c = -\frac{1}{3} \qquad \text{and} \qquad a_n = \frac{3^n}{\sqrt{n}}$$
for the radius
$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{3^{n+1}}{\left(\sqrt{n+1}\right)} \cdot \frac{\sqrt{n}}{3^n} = \left(\sqrt{\frac{n}{n+1}}\right) 3 \to 3 \text{ as } n \to \infty, \qquad \text{so } R = \frac{1}{3}$$
and the series is **absolutely convergent** for $x \in (c-R, c+R) = \left(-\frac{2}{3}, 0\right)$
now for $x = 0$

we get the series
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} = \infty$$
 $(p = \frac{1}{2} < 1)$

for $x = -\frac{2}{3}$ we get $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ and it is **conditionally convergent** by Alt.Test,since $\frac{1}{\sqrt{n}} \searrow 0$ and together the series is **convergent** on $\left[-\frac{2}{3},1\right)$ **For 3**) set x + 1 = t x = t - 1 for $x \neq \frac{1}{2}$ $f(x) = \frac{1}{(2x-1)^2} = \frac{1}{(2t-3)^2} = \frac{1}{3^2} \cdot \frac{1}{\left(1-\frac{2}{3}t\right)^2} =$

 $= \frac{1}{3^2} \sum_{n=1}^{\infty} n \frac{2^{n-1}}{3^{n-1}} t^{n-1} = \sum_{n=1}^{\infty} \frac{2^{n-1}}{3^{n+1}} n (x+1)^{n-1}$

for $-1 < \frac{2(x+1)}{3} < 1$, so -3 < 2x + 2 < 3, and finally $-\frac{5}{2} < x < \frac{1}{2}$.

(using $\sum_{n=1}^{\infty} n r^{n-1} = \frac{1}{(1-r)^2}$ if -1 < r < 1 for $r = \frac{2}{3}t$)

2