The University of Calgary
 Department of Mathematics and Statistics
 MATH 349-01/02 Quiz \# 3R

Fall 2008
Name: \qquad I.D. \#: \qquad

1. Is the series $\sum_{n=1}^{\infty}(-1)^{n} \sin \frac{1}{n}$ absolutely or conditionally convergent or divergent? Explain.
2. Find the centre,radius and interval of convergence of power series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(3 x+1)^{n}}{\sqrt{n}} \tag{3}
\end{equation*}
$$

3. Express $f(x)=\frac{1}{(2 x-1)^{2}}$ in powers of $(x+1)$.

On what interval is the representation valid?

Solutions

For1)

First , let's try abs.convergence $\sum_{n=2}^{\infty}\left|(-1)^{n} \sin \frac{1}{n}\right|=\sum_{n=2}^{\infty} \sin \frac{1}{n}$
$a_{n}=\sin \frac{1}{n}$ is equivalent to $b_{n}=\frac{1}{n}$ since $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\sin \frac{1}{n}}{\frac{1}{n}}=\lim _{h \rightarrow 0} \frac{\sin h}{h}=1$
and $\sum_{n=1}^{\infty} \frac{1}{n}=\infty$ so the series is divergent by Limit Comp.Test.
For conditionally convergence let's investigate the sequence $\left\{a_{n}\right\}$:
limit is 0 and a_{n} is decreasing since $\left(\sin \frac{1}{x}\right)^{\prime}=\cos \frac{1}{x} \cdot\left(\frac{-1}{x^{2}}\right)<0$ for $x \geq 1$
thus by Alt.Test the original series is cond.convergent
For 2)
$\sum_{n=1}^{\infty} \frac{(3 x+1)^{n}}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{3^{n}\left(x+\frac{1}{3}\right)^{n}}{\sqrt{n}} \quad c=-\frac{1}{3} \quad$ and $\quad a_{n}=\frac{3^{n}}{\sqrt{n}}$
for the radius
$\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{3^{n+1}}{(\sqrt{n+1})} \cdot \frac{\sqrt{n}}{3^{n}}=\left(\sqrt{\frac{n}{n+1}}\right) 3 \rightarrow 3$ as $n \rightarrow \infty, \quad$ so $R=\frac{1}{3}$
and the series is absolutely convergent for $x \in(c-R, c+R)=\left(-\frac{2}{3}, 0\right)$
now for $x=0$
we get the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}=\infty \quad\left(p=\frac{1}{2}<1\right)$
for $x=-\frac{2}{3}$ we get
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}} \quad$ and it is conditionally convergent by Alt.Test,since $\frac{1}{\sqrt{n}} \searrow 0$ and together the series is convergent on $\left[-\frac{2}{3}, 1\right)$
For 3)
set $x+1=t \quad x=t-1 \quad$ for $x \neq \frac{1}{2}$
$f(x)=\frac{1}{(2 x-1)^{2}}=\frac{1}{(2 t-3)^{2}}=\frac{1}{3^{2}} \cdot \frac{1}{\left(1-\frac{2}{3} t\right)^{2}}=$
$=\frac{1}{3^{2}} \sum_{n=1}^{\infty} n \frac{2^{n-1}}{3^{n-1}} t^{n-1}=\sum_{n=1}^{\infty} \frac{2^{n-1}}{3^{n+1}} n(x+1)^{n-1}$
for $-1<\frac{2(x+1)}{3}<1$, so $-3<2 x+2<3$, and finally $-\frac{5}{2}<x<$
$\frac{1}{2}$.
(using $\sum_{n=1}^{\infty} n r^{n-1}=\frac{1}{(1-r)^{2}}$ if $-1<r<1$ for $r=\frac{2}{3} t$)

