The University of Calgary
 Department of Mathematics and Statistics
 MATH 349-01/02 Quiz \# 3T

Fall 2008
Name: \qquad I.D. \#: \qquad

1. Is the series $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln n}$ absolutely or conditionally convergent or divergent?

Explain.
2. Find the centre,radius and interval of convergence of power series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(2 x+1)^{n}}{n 3^{n}} \tag{3}
\end{equation*}
$$

3. Express $f(x)=\frac{1}{(3 x+1)^{2}}$ in powers of $(x-1)$.

On what interval is the representation valid?

Solutions

For1)

First ,let's try abs.convergence $\sum_{n=2}^{\infty}\left|\frac{(-1)^{n}}{\ln n}\right|=\sum_{n=2}^{\infty} \frac{1}{\ln n}$
for $n \geq 2$ the coef.are positive and since $\ln n<n$
$a_{n}=\frac{1}{\ln n}>b_{n}=\frac{1}{n}$ and $\sum_{n=1}^{\infty} \frac{1}{n}=\infty$ so the series is divergent by Comp.Test.
For conditionally convergence let's investigate the sequence $\left\{a_{n}\right\}$:
limit is 0 and $\left\{a_{n}\right\}$ is decreasing $=\frac{1}{\text { incr.pos. }}$
thus by Alt.Test the original series is cond.convergent
For 2)
$\sum_{n=1}^{\infty} \frac{(2 x+1)^{n}}{n 3^{n}}=\sum_{n=1}^{\infty} \frac{2^{n}\left(x+\frac{1}{2}\right)^{n}}{n 3^{n}}$
the centre is $c=-\frac{1}{2} \quad$ and $\quad a_{n}=\frac{2^{n}}{n 3^{n}}$
for the radius
$\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{2^{n+1}}{(n+1) 3^{n+1}} \cdot \frac{n 3^{n}}{2^{n}}=\left(\frac{n}{n+1}\right) \frac{2}{3} \rightarrow \frac{2}{3}$ as $n \rightarrow \infty$, so $R=\frac{3}{2}$
and the series is absolutely convergent for $x \in(c-R, c+R)=(-2,1)$
now for $x=1$
we get the series $\sum_{n=1}^{\infty} \frac{3^{n}}{n} \frac{1}{3^{n}}=\sum_{n=1}^{\infty} \frac{1}{n}=\infty$-harmonic series
for $x=-2$ we get
$\sum_{n=1}^{\infty} \frac{(-3)^{n}}{n 3^{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$
and it is alt.harmonic series conditionally convergent by Alt.Test, therefore the original series is cond.covergent at $x=-2$
and together the series is convergent on $[-2,1)$
For 3)
set $x-1=t \quad x=1+t \quad$ for $x \neq-\frac{1}{3}$
$\frac{1}{(3 x+1)^{2}}=\frac{1}{(4+3 t)^{2}}=\frac{1}{4^{2}} \cdot \frac{1}{\left(1+\frac{3}{4} t\right)^{2}}=$
$=\frac{1}{4^{2}} \sum_{n=1}^{\infty}(-1)^{n-1} n \frac{3^{n-1}}{4^{n-1}} t^{n-1}=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{3^{n-1}}{4^{n+1}} n(x-1)^{n-1}$
for $-1<\frac{3(x-1)}{4}<1$, so $-4<3 x-3<4$, and finally $-\frac{1}{3}<x<\frac{7}{3}$.
(using $\sum_{n=1}^{\infty}(-1)^{n-1} n r^{n-1}=\frac{1}{(1+r)^{2}}$ if $-1<r<1$, for $r=\frac{3}{4} t$)

