The University of Calgary
 Department of Mathematics and Statistics
 MATH 349
 Handout \# 3 Solution

For 1a)

$\sum_{n=3}^{\infty}|\ldots|=\sum_{n=3}^{\infty} \frac{1}{n(\ln n)}$ is divergent by Integral test:
$f(x)=\frac{1}{x \ln x}$ is positive,continous and decreasing for $x>1$
since $x \ln x$ is the product of two positive and increasing functions,
The integral is divergent,since
$\int_{3}^{\infty} \frac{1}{x(\ln x)} d x=\left(u=\ln x, d u=\frac{d x}{x}, \int \frac{d u}{u}=\ln |u|\right)=\underset{x \rightarrow \infty}{\lim } \ln (\ln x)-\ln \ln 3=\infty$
so the original series is NOT absolutely convergent.
For 1b)
it is conditionally convergent by Alt.Test since $a_{n}=\frac{1}{n(\ln n)} \rightarrow 0\left(\frac{1}{\infty}\right)$
and the sequence is decreasing - see above f is decreasing function
For 2a)
the series $\sum_{n=1}^{\infty} \frac{1}{\ln (n+1)}$ is divergent by Comparison Test since $0<\ln x<x$ for $x>1$,
$\ln (n+1)<n+1 \quad \frac{1}{\ln (n+1)}>\frac{1}{n+1}$
and $\sum_{n=1}^{\infty} \frac{1}{n+1}=\sum_{k=2}^{\infty} \frac{1}{k}$ which is divergent harmonic series (by Integral Test).

For 2 b)

the series is conditionally convergent by Alternating Test since the sequence
$a_{n}=\frac{1}{\ln (n+1)}$ has positive terms,limit $0\left(\frac{1}{\infty}\right)$ and is decreasing
since $\ln x$ is increasing,positive for $x>1$, and $" \frac{1}{\text { incr,pos }} "=$ decr.
For 3a)
investigate $\sum_{n=2}^{\infty}\left(\frac{1}{n}-\frac{1}{n!}\right)$ since $a_{n}=\left(\frac{1}{n}-\frac{1}{n!}\right)>0$ for $n \geq 3$
We can split into two series
harmonic series $\sum_{n=2}^{\infty} \frac{1}{n}$ which is divergent and the series $\sum_{n=2}^{\infty} \frac{1}{n!}$ which is convergent
by Ratio Test: $0<\frac{1}{(n+1)!} \cdot n!=\frac{1}{n+1} \rightarrow 0<1$,
so together the series $\sum_{n=2}^{\infty}\left(\frac{1}{n}-\frac{1}{n!}\right)$ is divergent.
The original series is NOT abs. convergent.
Also by Comparison Test for $n \geq 3 \quad n!\geq 2 n$ so $\frac{1}{n!} \leq \frac{1}{2 n}$ and
$\frac{1}{n}-\frac{1}{n!} \geq \frac{1}{n}-\frac{1}{2 n}=\frac{1}{2 n} \quad a_{n} \geq \frac{1}{2 n}$ for $n>2$.
For 3b)
we can separate again since $\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{n}$ is conditionally convergent by Alternating Test:
the sequence $\left\{\frac{1}{n}\right\}$ is decreasing, with positive terms and limit 0 .
And the second series $\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{n!}$ is absolutely convergent from above,
so together the original series is conditionally convergent.
Also directly by Alternating test but it is harder
the sequence a_{n} from above has limit 0 ,so we have to show that it is decreasing:
$a_{n+1}<a_{n} \quad \frac{1}{n+1}-\frac{1}{(n+1)!}<\frac{1}{n}-\frac{1}{n!}$, multiply both sides by $(n+1)!$:
$n!-1<(n+1)(n-1)!-(n+1)$, so $n!<n(n-1)!+(n-1)!-n$
$0<(n-1)!-n$
finally $n<(n-1)(n-2)<(n-1)$! which is true for $n \geq 4$
For 4a)
the centre is $c=-1$ and $a_{n}=\frac{n!}{4^{n}}$, so $0<\frac{a_{n+1}}{a_{n}}=\frac{(n+1)!}{4^{n+1}} \cdot \frac{4^{n}}{n!}=\frac{n+1}{4} \rightarrow \infty$, so $R=\frac{1}{L}=0$ and the series converges ONLY for $x=-1$.
For 4b)
$\sum_{n=1}^{\infty} \frac{n!}{(2 n)!}(2 x-1)^{n}=\sum_{n=1}^{\infty} \frac{n!}{(2 n)!} 2^{n}\left(x-\frac{1}{2}\right)^{n}$
the centre is $c=\frac{1}{2}$ and $a_{n}=\frac{n!\cdot 2^{n}}{(2 n)!}$, so $0<\frac{a_{n+1}}{a_{n}}=\frac{(n+1)!2^{n+1}}{(2 n+2)!} \cdot \frac{(2 n)!}{n!2^{n}}=$
$=\frac{(n+1) 2}{(2 n+2)(2 n+1)}=\frac{1}{2 n+1} \rightarrow 0$ so $R=\frac{1}{L}=+\infty$, so the interval is $(-\infty,+\infty)$. and the series is abs.convergent for any x.
For 5)
The answer must be in the form $\sum_{n=1}^{\infty} a_{n}(x-1)^{n}$
first
$x-1=t \quad x=t+1 \quad \frac{1}{(x+1)^{2}}=\frac{1}{(t+2)^{2}}=\frac{1}{4} \cdot \frac{1}{\left(1+\frac{t}{2}\right)^{2}}$
from Table
$\sum_{n=1}^{\infty}(-1)^{n-1} n r^{n-1}=\frac{1}{(1+r)^{2}}$ for any $-1<r<1$ and $r=\frac{t}{2}$
$\frac{1}{(x+1)^{2}}=\frac{1}{4} \sum_{n=1}^{\infty}(-1)^{n-1} n \frac{(x-1)^{n-1}}{2^{n-1}}=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2^{n+1}} \cdot n(x-1)^{n-1}$
OR $\quad(n-1=k)$
$\frac{1}{(x+1)^{2}}=\sum_{k=0}^{\infty} \frac{(-1)^{k}(k+1)}{2^{k+2}}(x-1)^{k} \quad$ for $-1<x<3$
since $-1<\frac{t}{2}<1 \quad-2<x-1<2$.
For 6a)
$\sum_{n=1}^{\infty} \frac{(4 x-1)^{n}}{n^{n}}=\sum_{n=1}^{\infty} \frac{4^{n}\left(x-\frac{1}{4}\right)^{n}}{n^{n}} \quad$ the centre is $c=\frac{1}{4}$ and $a_{n}=\frac{4^{n}}{n^{n}}$.
Since $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{4^{n+1}}{(n+1)^{n+1}} \cdot \frac{n^{n}}{4^{n}}=\frac{4}{n+1} \cdot\left(\frac{n}{n+1}\right)^{n} \rightarrow L=0 \cdot \frac{1}{e}=0$,
using $\lim _{n \rightarrow \infty}\left(1+\frac{a}{n}\right)^{n}=e^{a} \quad R=\frac{1}{L}=+\infty$, the interval is $(-\infty,+\infty)$
the series is abs. convergent for any x;
Easier by Root Test $\left(\left|a_{n}\right|\right)^{\frac{1}{n}}=\frac{4}{n} \rightarrow 0$.

For 6b)

the centre is $c=4$ and $a_{n}=(-1)^{n} \frac{n}{2^{n}}$,since $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{n+1}{2^{n+1}} \cdot \frac{2^{n}}{n} \rightarrow \frac{1}{2}$
the radius is $R=2$ and series is absolutely convergent on $(2,6)$.
Now,for $x=2$
we have to investigate $\sum_{n=1}^{\infty} n=+\infty$ and for $x=6$ the series $\sum_{n=1}^{\infty}(-1)^{n} n$ which is also divergent since ther limit of the n -th term is NOT 0.
So the interval is only

For 7)

The answer must be in the form $\sum_{n=0}^{\infty} a_{n}(x+1)^{n}$.
put $x+1=t \quad x=t-1 \quad$ then
$\ln (2-x)=\ln (3-t)=\ln \left[3\left(1-\frac{t}{3}\right)\right]=\ln 3+\ln \left(1-\frac{t}{3}\right)$
using $\ln (1-s)=-\sum_{n=1}^{\infty} \frac{1}{n} s^{n}$ for $s \in[-1,1) \quad s=\frac{x+1}{3}$
$=\ln 3-\sum_{n=1}^{\infty} \frac{1}{n 3^{n}}(x+1)^{n}$ for $x \in[-4,2[$
since $-1 \leq \frac{x+1}{3}<1 \quad-3 \leq x+1<3 \quad-4 \leq x<2$

For 8)

The answer must be in the form $\sum_{n=0}^{\infty} a_{n}(x+4)^{n}$.
put $x+4=t \quad x=t-4$
$\frac{1}{1-2 x}=\frac{1}{1-2(t-4)}=\frac{1}{9-2 t}=\frac{1}{9} \cdot \frac{1}{1-\frac{2}{9} t}$
now, using $\frac{1}{1-r}=\sum_{n=0}^{\infty} r^{n}$ for $-1<r<1$, where $r=\frac{2(x+4)}{9}$ we get
$\frac{1}{1-2 x}=\frac{1}{9} \sum_{n=0}^{\infty} \frac{2^{n}}{9^{n}}(x+4)^{n}=\sum_{n=0}^{\infty} \frac{2^{n}}{9^{n+1}}(x+4)^{n}$, so $a_{n}=\frac{2^{n}}{9^{n+1}}$
Now, to find the interval ,solve for $x: \quad-1<\frac{2(x+4)}{9}<1$
$-9<2 x+8<9 \quad \frac{-17}{2}<x<\frac{1}{2}$.

