MATHEMATICS 353 QUIZ #1 R

WINTER 2006

[5]

1. Find ∂D - boundary of D. Is D closed? Open? Bounded? Sketch the set.

(a)
$$D = (x, y) | \sqrt{x} < \sqrt{y}$$

(b)
$$D = \{(x, y, z) \mid x^2 + y^2 \le z \le 9\}$$

SOLUTION

for a)

it must $x \ge 0$, and y > 0 then $0 \le x < y$

in the first quadrant and above the line y=x; so the set UNBDD and the boundary is $\partial D=\{y=x,x\geq 0\}\cup\{x=0,y>0\}$

first part is out, other parts are in, so neither open nor closed.

for b)

 $z=x^2+y^2$ is half of a paraboloid, $z\geq 0,\,z=9$ is a horizontal plane

so D is the set of points on or above the paraboloid ,and on or below the plane z=9 therefore the set BDD,and the boundary $\partial D=\{z=9,x^2+y^2\leq 9\}\cup\{z=x^2+y^2,0\leq Z\leq 9\}$

"lid" and "cup"

both parts are included in D ,so the set is CLOSED

2. Find all local extrema of $f(x,y) = 4xy^2 - 2x^2 - y^2$ in its domain. Explain. [5]

SOLUTION

f is defined, continous, differentiable everywhere, for critical points solve

$$f_x = 4y^2 - 4x = 0 \qquad x = y^2$$

$$f_y = 8xy - 2y = 2y(4x - 1) = 0$$
 $x = \frac{1}{4}$ or $y = 0$

we got 3 critical points (0,0), $(\frac{1}{4},\frac{1}{2})$, $(\frac{1}{4},-\frac{1}{2})$

for Second Derivative Test

$$f_{xx} = -4 \qquad f_{xy} = 8y \qquad f_{yy} = 8x - 2$$

Now A ...B....C....D

(0,0)	-4	0.	-2	neg	loc. max
$\left(\frac{1}{4},\frac{1}{2}\right)$	-4	4	0	pos	saddle
$\left(\frac{1}{4}, -\frac{1}{2}\right)$	-4	-4	0	pos	saddle

