## MATH 353 FINAL HANDOUT

1. For $f(x, y)=x^{2}(y+1)^{3}+y^{2}$ show that $(0,0)$ is a local minimum, then decide if it is also absolute min.Explain.
2. Sketch the region of integration and evaluate

$$
\int_{-1}^{0}\left(\int_{-1}^{\sqrt[3]{y}} \frac{d x}{x^{4}+1}\right) d y
$$

3. Find all points on the sphere $x^{2}+y^{2}+z^{2}=36$ closest to $P(1,2,2)$.
4. Express the integral

$$
\iint_{D} \frac{x+y}{x^{2}+y^{2}} d x d y
$$

where $D$ is the region above the line $x+y=2$ and inside the circle $x^{2}+y^{2}=4$
(a) as interated integrals in cartesian coordinates;
(b) as iterated integrals in polar coordinates
then evaluate only once.
5. Evaluate $\quad \iiint_{B} \frac{z d V}{\sqrt{x^{2}+y^{2}}}$ where $B=\left\{(x, y, z) ; 1 \leq z \leq 4\right.$ and $\left.z \geq x^{2}+y^{2}\right\}$.
6. Find the surface area of $S$ where $S$ is the part of $\quad z=\sqrt{3 x^{2}+3 y^{2}}$ below the plane $\quad x+z=4$.
7. Find $\quad \oint_{c} \mathbf{F} \cdot \mathbf{d s}$ where $\mathbf{F}=\left(y^{3} x+\cos \left(x^{2}\right), e^{y^{2}}+\sin (\pi x)\right)$ and $c$ is boundary of the triangle $T$ from $(0,2)$ to $(2,2)$ to $(2,0)$ and back to $(0,2)$.
8. Show that for any smooth vector field $\mathbf{F}(x, y)$ and any smooth real-valued function $\phi(x, y)$
$\operatorname{div}(\phi \mathbf{F})=\operatorname{grad} \phi \bullet \mathbf{F}+\phi \operatorname{div} \mathbf{F} \quad \boldsymbol{\nabla} \cdot(\phi \mathbf{F})=\boldsymbol{\nabla} \phi \cdot \mathbf{F}+\phi(\boldsymbol{\nabla} \cdot \mathbf{F})$.
9. Evaluate $\quad \oint_{c} \mathbf{F} \cdot \mathbf{d s}$ where $\mathbf{F}=\left(x^{2}+y, y^{3}-x, z^{4}\right)$ and $c$ is given as $\left\{x^{2}+y^{2}=4\right\} \cap\{2 x-3 y+z=2\}$ oriented positively.
10. Find the flux of $\mathbf{F}=\left(x^{2}, y^{2}, z^{2}\right)$ outward from the closed surface $S=\left\{x^{2}+y^{2}+4(z-1)^{2}=4\right\}$.
11. Evaluate $\quad \int_{c} \mathbf{F} \bullet \mathbf{d s} \quad$ where $\mathbf{F}=(y, x, 2 z)$ and $c=\{z=2 x y\} \cap\left\{x^{2}+y^{2}=2\right\}$ from $A(-1,1,-2)$ to $B(1,1,2)$.
12. For the vector field $\mathbf{F}(x, y, z)=\left(\arctan z\left(x^{2}+y^{2}\right), \ln \left(1+y^{2}+z^{2}\right), y e^{x y z}\right)$ find $\operatorname{div} \mathbf{F}$ and $\operatorname{curl} \mathbf{F}$ in the domain.

