FINAL EXAMINATION

WINTER 2002

TIME: 3 hours

1. For $f(x, y)=x^{2} y-6 y$ find
(a) local extrema and
(b) absolute extrema on $D=\left\{(x, y) ; x^{2}+y^{2} \leq 9\right\}$.
for a)
solve $\quad \nabla f=\mathbf{0} \quad f_{x}=2 x y=0$ and $f_{y}=x^{2}-6=0$
only two points $(\pm \sqrt{6}, 0)$
now by Second Derivative test
$f_{x x}=2 y=0 \quad f_{x y}=2 x \quad f_{y y}=0$
the discriminant $D=f_{x y}^{2}-f_{x x} f_{y y}=4 x^{2}>0 \quad$ both are saddle points for b)
inside critical points as in a)
on the boundary $\partial D=\left\{(x, y) ; g(x, y)=x^{2}+y^{2}=9\right\}$
$x^{2}=9-y^{2} \quad f$ on $\partial D=h(y)=3 y-y^{3}$ on $[-3,3]$
end points $(0, \pm 3)$ and critical points $(\pm \sqrt{8}, 1),(\pm \sqrt{8},-1)$
since $h^{\prime}(y)=3-3 y^{2}=0$ for $y= \pm 1$
OR
use Langrange multiplier $\quad \nabla f=\lambda \nabla g$
solve $2 x y=\lambda 2 x \quad x^{2}-6=\lambda 2 y \quad x^{2}+y^{2}=9$
from the first equ. $x=0$ back to the constraint $y= \pm 3(\lambda=\mp 1)$
OR for $x \neq 0 \quad y=\lambda \quad x^{2}-6=2 y^{2}$
back to the constraint $\quad 6+3 y^{2}=9$ so $y= \pm 1, x= \pm \sqrt{8}$
we have 6 critical points on the boundary,now compare values
$f(\pm \sqrt{8}, 1)=2 \quad f(\pm \sqrt{8},-1)=-2 \quad$ and
$f(0,3)=-18 \quad \min \quad f(0,-3)=18 \quad \max$.
2. Express the integral

$$
\iint_{D} \frac{x+y}{x^{2}+y^{2}} d x d y
$$

where D is the region above the line $x+y=2$ and inside the circle $x^{2}+y^{2}=4$
(a) as interated integrals in cartesian coordinates;
(b) as iterated integrals in polar coordinates
then evaluate only once.
[10]
for a)
sketch the set
$D=\left\{x+y \geq 2\right.$ and $\left.x^{2}+y^{2} \leq 4\right\}=\left\{0 \leq x \leq 2,2-x \leq y \leq \sqrt{4-x^{2}}\right\}$
so
$\iint_{D} \frac{x+y}{x^{2}+y^{2}} d x d y=\int_{0}^{2}\left(\int_{2-x}^{\sqrt{4-x^{2}}} \frac{x+y}{x^{2}+y^{2}} d y\right) d x=\mathrm{OR}=\int_{0}^{2}\left(\int_{2-y}^{\sqrt{4-y^{2}}} \frac{x+y}{x^{2}+y^{2}} d x\right) d y$
for b)
$D^{*}=\left\{r(\cos \theta+\sin \theta) \geq 2\right.$ and $\left.0 \leq r \leq 2, \theta \in\left[0, \frac{\pi}{2}\right]\right\}$
$\iint_{D} \frac{x+y}{x^{2}+y^{2}} d x d y=\iint_{D^{*}} \frac{r(\cos \theta+\sin \theta)}{r^{2}} r d r d \theta=\int_{0}^{\frac{\pi}{2}}(\cos \theta+\sin \theta)\left(\int_{\frac{2}{\cos \theta+\sin \theta}}^{2} d r\right) d \theta=$
$=\int_{0}^{\frac{\pi}{2}}(\cos \theta+\sin \theta)\left(2-\frac{2}{\cos \theta+\sin \theta}\right) d \theta=\int_{0}^{\frac{\pi}{2}} 2(\cos \theta+\sin \theta) d \theta-2 \cdot \frac{\pi}{2}=$
$=2[\sin \theta-\cos \theta]_{0}^{\frac{\pi}{2}}-\pi=4-\pi$.
3. Evaluate $\iiint_{B} \frac{z d V}{\sqrt{x^{2}+y^{2}}}$
where $B=\left\{(x, y, z) ; 1 \leq z \leq 4\right.$ and $\left.z \geq x^{2}+y^{2}\right\}$.
sketch the set $B \quad$ a layer of a paraboloid
use cylindrical coordinates
$B^{*}=\left\{1 \leq z \leq 4\right.$ and $\left.z \geq r^{2}, \theta \in[0,2 \pi]\right\}$
so

$$
\iiint_{B} \frac{z d V}{\sqrt{x^{2}+y^{2}}}=\iiint_{B^{*}} \frac{z}{\sqrt{r^{2}}} r d r d z d \theta=2 \pi \iint_{D^{*}} z d r d z
$$

where $D^{*}=\{1 \leq z \leq 4,0 \leq r \leq \sqrt{z}\}$
the integral $I=2 \pi \int_{1}^{4} z\left(\int_{0}^{\sqrt{z}} d r\right) d z=2 \pi \int_{1}^{4} z^{\frac{3}{2}} d z=\frac{4 \pi}{5}\left[z^{\frac{5}{2}}\right]_{1}^{4}=\frac{4 \pi}{5}\left[2^{5}-1\right]=\frac{124 \pi}{5}$.
4. Find the surface area of S
where S is the part of $\quad z=\sqrt{3 x^{2}+3 y^{2}}$ below the plane $\quad x+z=4$.
$S A=\iint_{S} d S=\iint_{D}\|\mathbf{n}\| d x d y$ we have to find D and $\mathbf{n}=(\nabla z,-1)=\left(\frac{\sqrt{3} x}{\sqrt{x^{2}+y^{2}}}, \frac{\sqrt{3} y}{\sqrt{x^{2}+y^{2}}},-1\right)$
and $\|\mathbf{n}\|^{2}=\frac{3 x^{2}+3 y^{2}}{x^{2}+y^{2}}+1=4 \quad\|\mathbf{n}\|=2$
for D find the intersection of the given cone and plane
$z=4-x=\sqrt{3 x^{2}+3 y^{2}} \quad 16-8 x+x^{2}=3 x^{2}+3 y^{2}$
$16=2 x^{2}+8 x+3 y^{2} \quad 24=2(x+2)^{2}+3 y^{2}$
finally $\quad D=\left\{2(x+2)^{2}+3 y^{2} \leq 24\right\}=\left\{\left(\frac{x+2}{\sqrt{12}}\right)^{2}+\left(\frac{y}{\sqrt{8}}\right)^{2} \leq 1\right\}$
so $\quad S A=2 \cdot$ area of an ellipse $=2 \pi a b=2 \pi \sqrt{12} \sqrt{8}=8 \pi \sqrt{6}$.
5. Find

$$
\oint_{c} \mathbf{F} \cdot \mathrm{ds}
$$

where $\mathbf{F}=\left(y^{3} x+\cos \left(x^{2}\right), e^{y^{2}}+\sin (\pi x)\right)$ and c is boundary of the triangle T from $(0,2)$ to $(2,2)$ to $(2,0)$ and back to $(0,2)$.
the curve is closed and $n=2$ use Green's theorem
$\oint_{c} \mathbf{F} \cdot \mathbf{d s}=-\iint_{T}\left[\left(F_{2}\right)_{x}-\left(F_{1}\right)_{y}\right] d x d y$ because of the orientation of c
where $T=\{0 \leq x \leq 2,2-x \leq y \leq 2\}=\{0 \leq y \leq 2,2-y \leq x \leq 2\}$
and $\quad\left[\left(F_{2}\right)_{x}-\left(F_{1}\right)_{y}\right]=\pi \cos \pi x-3 x y^{2}$
so the integral $=-\iint_{T}\left[\pi \cos \pi x-3 x y^{2}\right] d x d y=\int_{0}^{2} 3 y^{2}\left(\int_{2-y}^{2} x d x\right) d y-\int_{0}^{2} \pi \cos \pi x\left(\int_{2-x}^{2} d y\right) d x=$
$=\int_{0}^{2} 3 y^{2} \cdot \frac{2^{2}-(2-y)^{2}}{2} d y-\int_{0}^{2} x \cdot \pi \cos \pi x d x=\frac{3}{2} \int_{0}^{2}\left(4 y^{3}-y^{4}\right) d y-[x \sin \pi x]_{0}^{2}-\left[\frac{\cos \pi x}{\pi}\right]_{0}^{2}=$
$=\frac{3}{2}\left[2^{4}-\frac{2^{5}}{5}\right]-0=\frac{72}{5}$.
6. Show that for any smooth vector field $\mathbf{F}(x, y)$ and any smooth real-velude function $\phi(x, y)$
$\operatorname{div}(\phi \mathbf{F})=\operatorname{grad} \phi \cdot \mathbf{F}+\phi \operatorname{div} \mathbf{F} \quad \boldsymbol{\nabla} \cdot(\phi \mathbf{F})=\boldsymbol{\nabla} \boldsymbol{\phi} \cdot \mathbf{F}+\phi(\boldsymbol{\nabla} \cdot \mathbf{F})$.
$\operatorname{div}(\phi \mathbf{F})=\left(\phi F_{1}\right)_{x}+\left(\phi F_{2}\right)_{y}+\left(\phi F_{3}\right)_{z}=\phi\left(F_{1}\right)_{x}+\phi_{x} F_{1}+\phi\left(F_{2}\right)_{y}+\phi_{y} F_{2}+\phi\left(F_{3}\right)_{z}+\phi_{z} F_{3}=$ $\left.=\phi\left(F_{1}\right)_{x}+\phi\left(F_{2}\right)_{y}+\phi\left(F_{3}\right)_{z}+\left(\phi_{x}, \phi_{y}, \phi_{z}\right) \cdot F_{1}, F_{2}, F_{3}\right)=\phi \operatorname{div} \mathbf{F}+\operatorname{grad} \phi \cdot \mathbf{F}$
7. Evaluate $\quad \oint_{c} \mathbf{F} \cdot \mathbf{d s}$ where $\mathbf{F}=\left(x^{2}+y, y^{3}-x, z^{4}\right)$
and c is given as $\left\{x^{2}+y^{2}=4\right\} \cap\{2 x-3 y+z=2\}$ oriented positively.
since c is closed we can use Stokes's Theorem
$I=\oint_{c} \mathbf{F} \cdot \mathbf{d s}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{d S}$
where
$\operatorname{curl} \mathbf{F}=\left\|\begin{array}{ccc}+ & - & + \\ \partial_{x} & \partial_{y} & \partial_{z} \\ x^{2}+y & y^{3}-x & z^{4}\end{array}\right\|=(0,0,-2)$
and
S is a part of the plane $z=2-2 x+3 y$ so $\mathbf{n}=(-\nabla z, 1)=(2,-3,1)$
inside the cylinder $\left\{x^{2}+y^{2} \leq 4\right\}=D$
thus
$I=\iint_{D}(-2) d x d y=-2 \cdot$ area of $D=-8 \pi$.
8. Find the flux of $\mathbf{F}=\left(x^{2}, y^{2}, z^{2}\right)$ outward
from the closed surface $S=\left\{x^{2}+y^{2}+4(z-1)^{2}=4\right\}$.
since S is closed use Divergence theorem
$\operatorname{div} \mathbf{F}=2 x+2 y+2 z$ and
$I=\iint_{S} \mathbf{F} \cdot \mathbf{d S}=2 \iiint_{B}(x+y+z) d x d y d z$ where $B=\left\{x^{2}+y^{2}+4(z-1)^{2} \leq 4\right\}$
ellipsoid symmetrical in x and in y so $I=0+0+2 \iiint_{B} z d x d y d z=$
$=2 \int_{0}^{2} z \iint_{D_{z}} d x d y$
where $D_{z}=\left\{x^{2}+y^{2} \leq 4-4(z-1)^{2}=8 z-4 z^{2}\right\}$ circle for each fixed z
thus $\quad I=2 \int_{0}^{2} z \pi\left[8 z-4 z^{2}\right] d z=8 \pi \int_{0}^{2}\left(2 z^{2}-z^{3}\right) d z=8 \pi\left[\frac{2}{3} \cdot 2^{3}-\frac{2^{4}}{4}\right]=\frac{32}{3} \pi$

Or cylindrical coordinates $2 \iiint_{B} z d x d y d z=4 \pi \iint_{D^{*}} z r d r d z$
where $D^{*}=\left\{r^{2}+4(z-1)^{2} \leq 4\right\}$
the integral $=\int_{0}^{2} z\left(\int_{0}^{\sqrt{4-4(z-1)^{2}}} r d r\right) d z=2 \int_{0}^{2} z\left(2 z-z^{2}\right) d z=\ldots$
Or modified spherical coord.
9. Show that for any smooth conservative field $\mathbf{F}(x, y)$ and any closed simple curve $c \subset \mathbb{R}^{2} \quad \oint_{c} \mathbf{F} \cdot \mathbf{d s}=0$.
using Green's Theorem
$\oint_{c} \mathbf{F} \cdot \mathbf{d} \mathbf{s}=\iint_{D}\left[\left(F_{2}\right)_{x}-\left(F_{1}\right)_{y}\right] d x d y$ where $c=\partial D$
since the filed is conservative $\left(F_{2}\right)_{x}=\left(F_{1}\right)_{y} \ldots$ necessary cond.
so the integral is 0
Or
$\oint_{c} \mathbf{F} \cdot \mathbf{d s}=f(B)-f(A)=0$ since $A=B$ where $\mathbf{F}=\nabla f$.
10. Bonus

Calculate $\int_{0}^{1} \frac{x^{a}-1}{\ln x} d x$ for $a>-1$.
define $F(a)=\int_{0}^{1} \frac{x^{a}-1}{\ln x} d x$ for $a>-1$ then $F(0)=0$
$F^{\prime}(a)=\int_{0}^{1} \frac{\partial}{\partial a}\left(\frac{x^{a}-1}{\ln x}\right) d x=\int_{0}^{1} \frac{x^{a} \ln x}{\ln x} d x=\int_{0}^{1} x^{a} d x=\left[\frac{x^{a+1}}{a+1}\right]_{0}^{1}=\frac{1}{a+1}$ for $a+1>0$
then $F(a)=\int F^{\prime}(a) d a+c=\ln (a+1)+c$ but since $F(0)=0$ also $c=0$
and $\quad \int_{0}^{1} \frac{x^{a}-1}{\ln x} d x=\ln (a+1)$ for $a>-1$
to justify the differentiation estimate for $a \geq a_{0}>-1(\ln x<0)$
$0 \leq x^{a}=e^{a \ln x} \leq e^{a_{0} \ln x}=x^{a_{0}} \ldots$. integrable majorant

