THE UNIVERSITY OF CALGARY
 DEPARTMENT OF MATHEMATICS AND STATISTICS
 FINAL EXAMINATION
 MATH 353 (L60)

SUMMER ,2000

TIME: 3 hours

1. Evaluate the integral $\iint_{D} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y$
where D is the region between two circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=9$, on the right from the y - axis.
$D=\left\{4 \leq x^{2}+y^{2} \leq 9, x \geq 0\right\}$
use polar coord.then $D^{*}=\left\{4 \leq r^{2} \leq 9, \theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right\}$

$$
\begin{aligned}
& \iint_{D} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y=\iint_{D^{*}} \frac{r \cos \theta}{\sqrt{r^{2}}} r d r d \theta=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \theta d \theta \cdot \int_{2}^{3} r d r= \\
& =2[\sin \theta]_{0}^{\frac{\pi}{2}} \cdot\left[\frac{r^{2}}{2}\right]_{2}^{3}=9-4=5 .
\end{aligned}
$$

2. Evaluate $\quad \iiint_{B} \frac{z y d V}{\sqrt{x^{2}+y^{2}+z^{2}}}$, where $B=\left\{(x, y, z) ; z \geq 0, y \geq 0, x^{2}+y^{2}+z^{2} \leq 4\right\}$. use spherical coord. $B^{*}=\left\{\phi \in\left[0, \frac{\pi}{2}\right], \theta \in[0, \pi], \rho^{2} \leq 4\right\}$.

$$
\begin{aligned}
& \iiint_{B} \frac{z y d V}{\sqrt{x^{2}+y^{2}+z^{2}}}=\iiint_{B^{*}} \frac{\rho \cos \phi \rho \sin \theta \sin \phi}{\sqrt{\rho^{2}}} \rho^{2} \sin \phi d \rho d \theta d \phi= \\
& =\int_{0}^{2} \rho^{3} d \rho \cdot \int_{0}^{\pi} \sin \theta d \theta \cdot \int_{0}^{\frac{\pi}{2}} \cos \phi \sin ^{2} \phi d \phi=\frac{2^{4}}{4}[-\cos \theta]_{0}^{\pi} \cdot\left[\frac{\sin ^{3} \phi}{3}\right]_{0}^{\frac{\pi}{2}}= \\
& =4 \cdot 2 \cdot \frac{1}{3}=\frac{8}{3}
\end{aligned}
$$

3. Derive the formula for the surface area of a sphere $x^{2}+y^{2}+z^{2}=R^{2}$
for any $R>0$. $\left(S A=4 \pi R^{2}\right)$.
the surface S could be described as

$$
z= \pm \sqrt{R^{2}-x^{2}-y^{2}}
$$

for $(x, y) \in D=\left\{x^{2}+y^{2} \leq R^{2}\right\}$
then $\mathbf{n}=(\nabla z,-1)= \pm\left(\frac{-x}{\sqrt{R^{2}-x^{2}-y^{2}}}, \frac{-y}{\sqrt{R^{2}-x^{2}-y^{2}}},-1\right)$
and $\|\mathbf{n}\|=\sqrt{\frac{x^{2}}{R^{2}-x^{2}-y^{2}}+\frac{y^{2}}{R^{2}-x^{2}-y^{2}}+1}=\frac{R}{\sqrt{R^{2}-x^{2}-y^{2}}}$
so $S A=2 S A^{+}(z>0)=2 \iint_{S^{+}} d S=2 \iint_{D}\|\mathbf{n}\| d x d y=$
$=2 \iint_{D} \frac{R}{\sqrt{R^{2}-x^{2}-y^{2}}} d x d y=2 R \iint_{D^{*}} \frac{r}{\sqrt{R^{2}-r^{2}}} d r d \theta$ (polar) $=$
$=2 R \cdot 2 \pi\left[-\sqrt{R^{2}-r^{2}}\right]_{0}^{R}=4 \pi R^{2}$,
where $D^{*}=\{0 \leq r \leq R, 0 \leq \theta \leq 2 \pi\}$,
4. Use Green's Theorem to claculate $\quad \int_{c} \mathbf{F} \cdot \mathbf{d s}$
where $\mathbf{F}=\left(x^{2} y, x y^{2}\right)$ and the curve c is boundary of the ellipse $x^{2}+4 y^{2}=1$, oriented counterclockwise.
for any smooth $\mathbf{F}=\left(F_{1}, F_{2}\right)$ by Green's Theorem $\int_{c} \mathbf{F} \cdot \mathbf{d s}=\iint_{D}\left[\left(F_{2}\right)_{x}-\left(F_{1}\right)_{y}\right] d x d y$, where D is inside c
so for our field $\left(F_{2}\right)_{x}-\left(F_{1}\right)_{y}=y^{2}-x^{2}$ and $D=\left\{x^{2}+4 y^{2} \leq 1\right\}$
and $\int_{c} \mathbf{F} \cdot \mathbf{d s}=\iint_{D}\left[y^{2}-x^{2}\right] d x d y$
by modified polar coord. $\quad x=r \cos \theta, y=\frac{1}{2} r \sin \theta$
we know that $x^{2}+4 y^{2}=r^{2}$ and $d x d y=\frac{1}{2} r d r d \theta$
thus

$$
\begin{aligned}
& \int_{c} \mathbf{F} \cdot \mathbf{d} \mathbf{s}=\iint_{D}\left[y^{2}-x^{2}\right] d x d y=\int_{0}^{2 \pi} \int_{0}^{1}\left[\frac{1}{4} r^{2} \sin ^{2} \theta-r^{2} \cos ^{2} \theta\right] \frac{1}{2} r d r d \theta= \\
& =\frac{1}{8} \int_{0}^{1} r^{3} d r \cdot \int_{0}^{2 \pi}\left(\sin ^{2} \theta-4 \cos ^{2} \theta\right) d \theta=\frac{1}{8}\left[\frac{r^{4}}{4}\right]_{0}^{1} \cdot \int_{0}^{2 \pi}\left(1-5 \cos ^{2} \theta\right) d \theta= \\
& =\frac{1}{32} \int_{0}^{2 \pi}\left(1-5 \frac{1+\cos 2 \theta}{2}\right) d \theta=\frac{1}{32}\left[\frac{-3}{2} 2 \pi-0\right]=-\frac{3}{32} \pi .
\end{aligned}
$$

5. Show that for any smooth (i.e. with continuous second order partials) conservative vector field \mathbf{F} of 3 variables $\operatorname{div} \mathbf{F}=\triangle \Phi$, where Φ is a potential of \mathbf{F} and \triangle is Laplace operator $\partial_{x x}+\partial_{y y}+\partial_{z z}$. we know that $\mathbf{F}=\nabla \Phi=\left(\Phi_{x}, \Phi_{y}, \Phi_{z}\right)$ and div $\mathbf{F}=\left(F_{1}\right)_{x}+\left(F_{2}\right)_{y}+\left(F_{3}\right)_{z}$
together div $\mathbf{F}=\left(\Phi_{x}\right)_{x}+\left(\Phi_{y}\right)_{y}+\left(\Phi_{z}\right)_{z}=\Phi_{x x}+\Phi_{y y}+\Phi_{z z}=\triangle \Phi$.
6. Find the flux of $\mathbf{F}=\left(x y z, x y, z^{2}+x^{2}\right)$ outward from the surface S-part of the paraboloid $z=4-x^{2}-y^{2}$ above the $x y-$ plane
(a) including the bottom;
(b) excluding the bottom.
$S_{l}=\left\{z=4-x^{2}-y^{2},(x, y) \in D\right\}$...lateral surface
and $S_{b}=\{z=0,(x, y) \in D\}$.....bottom
where $D=\left\{x^{2}+y^{2} \leq 4\right\}$
for a)
the surface is closed so we can use Gauss Theorem

$$
\begin{aligned}
& \text { flux } \iint_{S} \mathbf{F} \cdot \mathbf{d S}=\iiint_{B} d i v \mathbf{F} d x d y d z \quad \text { where } B \text { is inside } S \\
& B=\left\{0 \leq z \leq 4-x^{2}-y^{2},(x, y) \in D\right\} \\
& \begin{array}{l}
\operatorname{div} \mathbf{F}=\left(F_{1}\right)_{x}+\left(F_{2}\right)_{y}+\left(F_{3}\right)_{z}=(x y z)_{x}+(x y)_{y}+\left(z^{2}+x^{2}\right)_{z}= \\
\quad=y z+x+2 z
\end{array} \\
& \iint_{S} \mathbf{F} \cdot \mathbf{d S}=\iiint_{B}[x+(y+2) z] d x d y d z=0+0+\iint_{D}(2)\left[\frac{z^{2}}{2}\right]_{0}^{4-x^{2}-y^{2}} d x d y
\end{aligned}
$$

(since the integrand function is odd in x and set is symmetrical in x)
(since the integrand function is odd in y and set is symmetrical in y)

$$
\begin{aligned}
& =\iint_{D}\left(4-x^{2}-y^{2}\right)^{2} d x d y=(\text { polar })=\iint_{D^{*}}\left(4-r^{2}\right)^{2} r d r d \theta= \\
& =\int_{0}^{2 \pi} d \theta \cdot \int_{0}^{2}\left(4-r^{2}\right)^{2} r d r=2 \pi\left[\frac{-1}{6}\left(4-r^{2}\right)^{3}\right]_{0}^{2}=\frac{\pi}{3} \cdot 4^{3}=\frac{64}{3} \pi
\end{aligned}
$$

for b)
S is not closed but we can use part a) since
$\iint_{S_{l}} \mathbf{F} \cdot \mathbf{d S}=\iint_{S} \mathbf{F} \cdot \mathbf{d S}-\iint_{S_{b}} \mathbf{F} \cdot \mathbf{d S}=\frac{64}{3} \pi-?$
so we have to calculate the flux through the bottom
$S_{b}=\{z=0,(x, y) \in D\} \quad \mathbf{n}=(0,0,-1)$ and on S_{b}
$\mathbf{F}=\left(x y z, x y, z^{2}+x^{2}\right)_{z=0}=\left(0, x y, x^{2}\right)$
$\iint_{S_{b}} \mathbf{F} \cdot \mathbf{d S}=\iint_{D} \mathbf{F} \cdot \mathbf{n} d x d y=-\iint_{D} x^{2} d x d y=-\int_{0}^{2 \pi} \cos ^{2} \theta d \theta \cdot \int_{0}^{2} r^{2} r d r=$
$=-\int_{0}^{2 \pi} \frac{1+\cos 2 \theta}{2} d \theta \cdot\left[\frac{r^{4}}{4}\right]_{0}^{2}=-4 \pi$
therefore $\iint_{S_{l}} \mathbf{F} \cdot \mathbf{d S}=\frac{64}{3} \pi+4 \pi=\frac{76}{3} \pi$.
7. Evaluate $\quad \int_{c} \mathbf{F} \cdot \mathbf{d s}$
where $\mathbf{F}=\left(e^{x}-y^{3}, x^{3}+e^{y}, e^{z}\right)$ and c is closed curve, oriented counterclockwise $c=\{z=2 x y\} \cap\left\{x^{2}+y^{2}=1\right\}$.
since the curve is closed we can use Stokes' Theorem
with $S=\left\{z=2 x y\right.$, for $\left.x^{2}+y^{2} \leq 1\right\}$,
and upward $\mathbf{n}=(-\nabla z, 1)=(-2 y,-2 x, 1)$
we need $\operatorname{curl} \mathbf{F}=\left\|\begin{array}{ccc}+ & - & + \\ \partial_{x} & \partial_{y} & \partial_{z} \\ e^{x}-y^{3} & x^{3}+e^{y} & e^{z}\end{array}\right\|=\left(0,0,3 x^{2}+3 y^{2}\right)$
thus

$$
\begin{aligned}
& \int_{c} \mathbf{F} \cdot \mathbf{d} \mathbf{s}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{d S}=\iint_{\left\{x^{2}+y^{2} \leq 1\right\}}\left(0,0,3 x^{2}+3 y^{2}\right) \cdot(-2 y,-2 x, 1) d x d y \\
& =\iint_{\left\{x^{2}+y^{2} \leq 1\right\}}\left(3 x^{2}+3 y^{2}\right) d x d y=3 \cdot 2 \pi \int_{0}^{1} r^{3} d r=\frac{3}{2} \pi
\end{aligned}
$$

8. Evaluate $\quad \int_{c} \mathbf{F} \cdot \mathbf{d s} \quad$ where $\mathbf{F}=(x y, y, z)$ and
$c=\{z=2 x y\} \cap\left\{x^{2}+y^{2}=2\right\}$ between $A(-1,1,-2)$ and $B(1,1,2)$.
the curve is not closed nor the field is conservative
so we have to find a parametrization of c
from the cylinder $\quad x=\sqrt{2} \cos t, y=\sqrt{2} \sin t$ and from $z=2 x y$
we have $\quad \mathbf{r}(t)=(\sqrt{2} \cos t, \sqrt{2} \sin t, 4 \cos t \sin t)=(\sqrt{2} \cos t, \sqrt{2} \sin t, 2 \sin 2 t)$
now for $A \quad t=\frac{3}{4} \pi$, and for $B \quad t=\frac{\pi}{4}$
$\mathbf{r}^{\prime}(t)=(-\sqrt{2} \sin t, \sqrt{2} \cos t, 4 \cos 2 t)$ and the field on c
$\mathbf{F}=(x y, y, z)_{c}=(2 \sin t \cos t, \sqrt{2} \sin t, 2 \sin 2 t)$ then $\mathbf{F} \cdot \mathbf{r}^{\prime}=-2 \sqrt{2} \sin ^{2} t \cos t+\sin 2 t+4 \sin 4 t$ $\int_{c} \mathbf{F} \cdot \mathbf{d s}=\int_{\frac{3}{4} \pi}^{\frac{\pi}{4}} \mathbf{F} \cdot \mathbf{r}^{\prime} d t=-\int_{\frac{1}{4} \pi}^{\frac{3}{4} \pi}\left[-2 \sqrt{2} \sin ^{2} t \cos t+\sin 2 t+4 \sin 4 t\right] d t=$ $=2 \sqrt{2}\left[\frac{\sin ^{3} t}{3}\right]_{\frac{1}{4} \pi}^{\frac{3}{4} \pi}+\left[\frac{\cos 2 t}{2}\right]_{\frac{\pi}{4}}^{\frac{3}{4} \pi}-[\cos 4 t]_{\frac{\pi}{4}}^{\frac{3}{4} \pi}=0+0+0=0$.
