MATH 353

Handout \#2

1. Find absolute extrema of $\quad f(x, y)=\frac{1}{8} x^{3}+y^{3}$ on the circle $x^{2}+y^{2} \leq 65$
2. Find the absolute extrema of $\quad f(x, y)=x^{2}+y^{2}$ on the surface $S=\left\{\frac{1}{8} x^{3}+y^{3}=65, x \geq 0, y \geq 0.\right\}$.
3. Find absolute maxim and minima of $f(x, y)=2 y^{2}-x+x^{2}$ inside and on the triangle T with vertices $O(0,0), A(1,1), B(1,-1)$.
4. Find the point on the plane $x-2 y-z=3 \quad$ closest to the point $P(1,-1,2)$. Justify!
5. Find absolute maximum of $f(x, y, z)=x y z$ for $x, y, z \geq 0$
on the surface $2 x y+2 x z+3 y z=144$.
(You may assume that there is an absolute maximum).
6. (a) Evaluate $\int_{1}^{3}\left(\int_{-x}^{x^{2}} x e^{2 y} d y\right) d x$.
(b) Switch the order of integration in the integral above and sketch the region D.
7. Evaluate $\iint_{D} \sqrt{2-x^{2}} d A$ where D is smaller region between $y=x^{2}$ and $x^{2}+y^{2}=2$. and sketch the region
8. Switch the order of integration in the integral $\int_{0}^{\frac{\pi}{4}}\left(\int_{0}^{\tan x} f(x, y) d y\right) d x$.
9. For $\iint_{D} \frac{1}{x^{2}+y} d A$ where D is the region between the x -axis and $y=4-x^{2}$ sketch the region D and set up BOTH iterated integrals and evaluate one of them. (Hint: $\lim _{x \rightarrow 0^{+}} x \ln x=0$).
10. Calculate the volume of the solid below the surface $z=e^{(y-1)^{2}}$ and above the triangle T with vertices
$A(-1,0), B(0,1), C(2,0)$ with vertical sides.
