MATH 353 Handout #2

- 1. Find absolute extrema of $f(x,y) = \frac{1}{8}x^3 + y^3$ on the circle $x^2 + y^2 \le 65$
- 2. Find the absolute extrema of $f(x,y) = x^2 + y^2$ on the surface $S = \left\{ \frac{1}{8}x^3 + y^3 = 65, x \ge 0, y \ge 0. \right\}$.
- 3. Find absolute maxim and minima of $f(x,y) = 2y^2 x + x^2$ inside and on the triangle T with vertices O(0,0), A(1,1), B(1,-1).
- 4. Find the point on the plane x-2y-z=3 closest to the point $P\left(1,-1,2\right)$. Justify!
- 5. Find absolute maximum of f(x, y, z) = xyz for $x, y, z \ge 0$ on the surface 2xy + 2xz + 3yz = 144. (You may assume that there is an absolute maximum).
- 6. (a) Evaluate $\int_{1}^{3} \left(\int_{-x}^{x^2} xe^{2y} dy \right) dx$.
 - (b) Switch the order of integration in the integral above and sketch the region D.
- 7. Evaluate $\iint_D \sqrt{2-x^2} dA$ where D is smaller region between $y=x^2$ and $x^2+y^2=2$. and sketch the region
- 8. Switch the order of integration in the integral $\int_{0}^{\frac{\pi}{4}} \left(\int_{0}^{\tan x} f(x,y) dy \right) dx$.
- 9. For $\iint_D \frac{1}{x^2 + y} dA$ where D is the region between the x-axis and $y = 4 x^2$ sketch the region D and set up BOTH iterated integrals and evaluate one of them. (Hint: $\lim_{x \to 0^+} x \ln x = 0$).
- 10. Calculate the volume of the solid below the surface $z = e^{(y-1)^2}$ and above the triangle T with vertices

$$A(-1,0)$$
, $B(0,1)$, $C(2,0)$ with vertical sides.