The University of Calgary
 Department of Mathematics and Statistics
 MATH 353 Handout \#4 Solution

1. Given $\mathbf{F}(x, y, z)=\left(3 x^{2} y z, k y z+x^{3} z, x^{3} y+1+y^{2}\right)$.
(a) Find the value of k so that the field \mathbf{F} is conservative.
(b) Then, find a potential of \mathbf{F}.
2. Evaluate $\int_{c} f d s$ where $f(x, y, z)=z^{2}$ and c is the part of the line of intersection of two planes;
$x+y-z=1$ and $2 x+y-3 z=0$ between the xy-plane and the point $D(3,0,2)$.
3. For $\mathbf{F}(x, y)=\left(k y^{2}+x, x y-\frac{1}{\sqrt{y}}\right)$ find the value for k so that the field is conservative ,then find a potential.
4. Evaluate $\int_{c} z d s$ and c is the intersection of the plane $z-y=1$ and the vertical surface $0=x-y^{2}$ between $A(1,-1,0)$ and $B(0,0,1)$.
5. Find $\int_{c} \mathbf{F} \cdot d \mathbf{s}$ where $\mathbf{F}(x, y, z)=\left(z, e^{\frac{y}{x}}, 2 x\right)$ is given by $\mathbf{r}(t)=\left(t, t^{2}, e^{t}\right), t \in[1,2]$.
6. For $\mathbf{F}(x, y)=\left(3 x \sqrt{x^{2}+y^{4}}+\cos x, k y^{3} \sqrt{x^{2}+y^{4}}+\sin y\right)$ find the value for k so that the field is conservative ,then find a potential.
7. Evaluate $\int_{c} z d s$ and c is given by $\mathbf{r}(t)=(t \cos t, t \sin t, t), t \in[0,1]$.
8. Find $\int_{c} \mathbf{F} \cdot d \mathbf{s}$ where $\mathbf{F}(x, y, z)=(y, z, 2 x-z)$ and c is the intersection of the plane $z=2 x$ and the paraboloid $z=x^{2}+y^{2}$ oriented counterclockwise.
