The University of Calgary
 Department of Mathematics and Statistics
 MATH 353 Handout \#4 Solution

1. Given $\mathbf{F}(x, y, z)=\left(3 x^{2} y z, k y z+x^{3} z, x^{3} y+1+y^{2}\right)$.
(a) Find the value of k so that the field \mathbf{F} is conservative.
(b) Then, find a potential of \mathbf{F}.

For 1a)

necessary condition $\left(F_{1}\right)_{y}=3 x^{2} z=\left(F_{2}\right)_{x}=3 x^{2} z$
$\left(F_{1}\right)_{z}=3 x^{2} y=\left(F_{3}\right)_{x}=3 x^{2} y$, and finally
$\left(F_{2}\right)_{z}=k y+x^{3}=\left(F_{3}\right)_{y}=x^{3}+2 y$ gives us $k=2$.

For 1b)

$f_{x}=F_{1}=3 x^{2} y z \quad$ so by integrating with respect to x :
$f(x, y, z)=\int\left(3 x^{2} y z d x+c(y, z)=x^{3} y z+c(y, z)\right.$
differentiate $f_{y}=F_{2}=2 y z+x^{3} z=x^{3} z+\frac{\partial c}{\partial y}$ thus $\frac{\partial c}{\partial y}=2 y z$ and $c(y, z)=y^{2} z+c(z)$
together $f(x, y, z)=x^{3} y z+y^{2} z+c(z)$
differentiate $f_{z}=F_{3}=x^{3} y+1+y^{2}=x^{3} y+y^{2}+c^{\prime}(z)$ thus $c^{\prime}=1$ and $c(z)=z+c$ and finally the general potential $f(x, y, z)=x^{3} y z+y^{2} z+z+c$ where c is any constant.
2. Evaluate $\int_{c} f d s$ where $f(x, y, z)=z^{2}$ and c is the part of the line of intersection of two planes;
$x+y-z=1$ and $2 x+y-3 z=0$ between the xy-plane and the point $D(3,0,2)$
For 2)
first let's find the line , a direction vector $\mathbf{d}=\mathbf{n}_{1} \times \mathbf{n}_{2}$ (of normal vectors of the given planes)
$\mathbf{d}=(1,1,-1) \times(2,1,-3)=(-2,1,-1)$ so
$(x, y, z)=(3,0,2)+t(-2,1,-1)$ and when $t=0$ we get D
$x=3-2 t, y=t, z=2-t$
to get a point on the xy-plane $z=0$ so $t=2$ and the point is $P(-1,2,0)$
Together $\mathbf{r}(t)=(3-2 t, t, 2-t) \quad t \in[0,2], \mathbf{r}^{\prime}(t)=(-2,1,-1)=\mathbf{d}$
the given function f evaluated on $c \quad f \circ \mathbf{r}=(2-t)^{2}$
$\int_{c} f d s=\int_{0}^{2}(2-t)^{2}\left\|\mathbf{r}^{\prime}(t)\right\| d t=\sqrt{6}\left[\frac{(t-2)^{3}}{3}\right]_{0}^{2}=\frac{8}{3} \sqrt{6}$.
3. For $\mathbf{F}(x, y)=\left(k y^{2}+x, x y-\frac{1}{\sqrt{y}}\right)$ find the value for k so that the field is conservative ,then find a potential.
For 3)
$F_{1}=k y^{2}+x$ and $F_{2}=x y-\frac{1}{\sqrt{y}}$ for $y>0$
$\left(F_{1}\right)_{y}=2 k y=\left(F_{2}\right)_{x}=y$ so $k=\frac{1}{2}$
then
$f_{x}=\frac{1}{2} y^{2}+x$ and $f_{y}=x y-\frac{1}{\sqrt{y}}$
$f=\int f_{x} d x=\int\left(\frac{1}{2} y^{2}+x\right) d x+c(y)=\frac{1}{2} x y^{2}+\frac{1}{2} x^{2}+c(y)$
$f_{y}=x y+c^{\prime}(y)=x y-\frac{1}{\sqrt{y}} \quad c^{\prime}(y)=-\frac{1}{\sqrt{y}}$ for $y>0$
and $c(y)=-2 \sqrt{y} \quad$ together $f(x, y)=\frac{1}{2} x y^{2}+\frac{1}{2} x^{2}-2 \sqrt{y}+$ const.
4. Evaluate $\int_{c} z d s$ and c is the intersection of the plane $z-y=1$ and the paraboloid $0=x-y^{2}$ between $A(1,-1,0)$ and $B(0,0,1)$.

For 4)

intersection of $\quad z-y=1$ and $0=x-y^{2}$ between $A(1,-1,0)$ and $B(0,0,1)$
$y=t$ and $\mathbf{r}(t)=\left(t^{2}, t, 1+t\right)$ for $t \in[-1,0]$
$\mathbf{r}^{\prime}(t)=(2 t, 1,1)$ and $\left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{2+4 t^{2}}$

$$
\begin{aligned}
& \int_{c} z d s=\int_{-1}^{0}(1+t) \sqrt{2+4 t^{2}} d t=\int_{-1}^{0} \sqrt{2+4 t^{2}} d t+\int_{-1}^{0} t \sqrt{2+4 t^{2}} d t= \\
& \left(u=2 t, a=\sqrt{2}, d t=\frac{1}{2} d u \text { OR } \sqrt{2+4 t^{2}}=2 \sqrt{\frac{1}{2}+t^{2}}, a=\frac{1}{\sqrt{2}} \text { Table }\right) \\
& =\frac{1}{2}\left[t \sqrt{2+4 t^{2}}+\ln \left(2 t+\sqrt{2+4 t^{2}}\right)\right]_{-1}^{0}+\left[\frac{\left(2+4 t^{2}\right)^{\frac{3}{2}}}{12}\right]_{-1}^{0}= \\
& =\frac{\sqrt{6}}{2}+\frac{1}{2} \ln \sqrt{2}-\frac{1}{2} \ln (\sqrt{6}-2)+\left[\frac{\sqrt{2}}{6}-\frac{\sqrt{6}}{2}\right]=\sqrt{\frac{3}{2}}-\frac{1}{2} \ln (\sqrt{3}-\sqrt{2}) .
\end{aligned}
$$

5. Find $\int_{c} \mathbf{F} \cdot d \mathbf{s}$ where $\mathbf{F}(x, y, z)=\left(z, e^{\frac{y}{x}}, 2 x\right)$ is given by $\mathbf{r}(t)=\left(t, t^{2}, e^{t}\right), t \in[1,2]$.

For 5)

$\mathbf{r}(t)=\left(t, t^{2}, e^{t}\right), t \in[1,2] \quad \mathbf{r}^{\prime}(t)=\left(1,2 t, e^{t}\right)$
then the field on $c: \mathbf{F} \circ \mathbf{r}=\left(e^{t}, e^{t}, 2 t\right)$
$\int_{c} \mathbf{F} \cdot d \mathbf{s}=\int_{1}^{2} \mathbf{F} \cdot \mathbf{r}^{\prime} d t=\int_{1}^{2}\left(e^{t}+4 t e^{t}\right) d t=($ by parts $)$
$=\left[e^{t}+4 t e^{t}-4 e^{t}\right]_{1}^{2}=5 e^{2}-e$.
6. For $\mathbf{F}(x, y)=\left(3 x \sqrt{x^{2}+y^{4}}+\cos x, k y^{3} \sqrt{x^{2}+y^{4}}+\sin y\right)$ find the value for k so that the field is conservative ,then find a potential.

For 6)

$F_{1}=\left(3 x \sqrt{x^{2}+y^{4}}+\cos x\right.$ and $F_{2}=k y^{3} \sqrt{x^{2}+y^{4}}+\sin y$ for any point except the origin $\left(F_{1}\right)_{y}=\frac{6 x y^{3}}{\sqrt{x^{2}+y^{4}}}=\left(F_{2}\right)_{x}=\frac{k x y^{3}}{\sqrt{x^{2}+y^{4}}}$ so $k=6$ then $f=$?

$$
f_{x}=\left(3 x \sqrt{x^{2}+y^{4}}+\cos x \text { and } f_{y}=k y^{3} \sqrt{x^{2}+y^{4}}+\sin y\right.
$$

$f=\int f_{x} d x=\int\left(3 x \sqrt{x^{2}+y^{4}}+\cos x\right) d x+c(y)=\left(x^{2}+y^{4}\right)^{\frac{3}{2}}+\sin x+c(y)$
$f_{y}=\frac{3}{2} \sqrt{x^{2}+y^{4}} \cdot 4 y^{3}+c^{\prime}(y)=F_{2} \quad c^{\prime}(y)=\sin y$
and $\quad c(y)=-\cos y$
together $f(x, y)=\left(x^{2}+y^{4}\right)^{\frac{3}{2}}+\sin x-\cos y+$ const.
7. Evaluate $\int_{c} z d s$ and c is given by $\mathbf{r}(t)=(t \cos t, t \sin t, t), t \in[0,1]$.

For 7)

$\mathbf{r}(t)=(t \cos t, t \sin t, t), t \in[0,1] \mathbf{r}^{\prime}(t)=(\cos t-t \sin t, \sin t+t \cos t, 1)$
$\left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{(\cos t-t \sin t)^{2}+(\sin t+t \cos t)^{2}+1}=\sqrt{2+t^{2}}$
$\int_{c} z d s=\int_{0}^{1}\left(t \sqrt{2+t^{2}} d t=\left[\frac{\left(2+t^{2}\right)^{\frac{3}{2}}}{3}\right]_{0}^{1}=\sqrt{3}-\frac{2 \sqrt{2}}{3}\right.$.
8. Find $\int_{c} \mathbf{F} \cdot d \mathbf{s}$ where $\mathbf{F}(x, y, z)=(y, z, 2 x-z)$ and c is the intersection of the plane $z=2 x$ and the paraboloid $z=x^{2}+y^{2}$ oriented counterclockwise.

for 8)

intersection of $z=2 x$ and $z=x^{2}+y^{2} \quad 2 x=x^{2}+y^{2}$
$1=(x-1)^{2}+y^{2} \quad x=1+\cos t, y=\sin t$ and $z=2 x$
$\mathbf{r}(t)=(1+\cos t, \sin t, 2+2 \cos t), t \in[0,2 \pi]$
$\mathbf{r}^{\prime}(t)=(-\sin t, \cos t,-2 \sin t)$
then the field on $c: \mathbf{F} \circ \mathbf{r}=(\sin t, 2+2 \cos t, 0)$
$\int_{c} \mathbf{F} \cdot d \mathbf{s}=\int_{0}^{2 \pi} \mathbf{F} \cdot \mathbf{r}^{\prime} d t=\int_{0}^{2 \pi}\left(-\sin ^{2} t+2 \cos t+2 \cos ^{2} t\right) d t=$
$=-2 \pi+[2 \sin t]_{0}^{2 \pi}+\frac{3}{2} \int_{0}^{2 \pi}(1+\cos 2 t) d t=-2 \pi+3 \pi=\pi$.

