MATH 353

Handout \#5

1. Find the surface area of the part of the sphere $x^{2}+y^{2}+z^{2}=2$ that lies inside the paraboloid $z=x^{2}+y^{2}$.
2. Find the flux of $\mathbf{F}=\mathbf{i}+\mathbf{j}+z\left(x^{2}+y^{2}\right)^{2} \mathbf{k}$ out of the surface (including top and bottom) $S=\left\{(x, y, z) ; x^{2}+y^{2}=4,0 \leq z \leq 3\right\}$.
3. Find the surface area of S
(a) which is the part of the cylinder $x^{2}+y^{2}=4$
in the first octant below the plane $2 x+y+z=5$;
(b) which is the part of the plane $2 x+y+z=5$ inside the cylinder $x^{2}+y^{2}=4$.
4. Find the flux $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ where S is the part of the cylinder $y^{2}+z^{2}=4$ which lies inside the cylinder $x^{2}+y^{2}=4$,above the xy-plane,oriented upward, and the field is $\mathbf{F}(x, y, z)=\left(x^{2} y z, y, x z\right)$.
5. Evaluate $\int_{S} \int z x d S$ where S is the part of $z=\frac{x^{2}}{2}$ which lies inside $x^{2}+y^{2}=1, x>0, y<0$.
6. Evaluate $\iint_{S} x^{2} d S$ where S is the part of the plane $x+y+z=2$ inside the cyllinder $x^{2}+2 y^{2}=1$.
