MATH 353

Handout \#5 Solution

For1)

let's find the intersection of two given surfaces $z=x^{2}+y^{2} \rightarrow z+z^{2}=2$ so $z^{2}+z-2=0$ has positive sol. $z=1$ and we can describe the surface $S=\left\{z=\sqrt{2-x^{2}-y^{2}},(x, y) \in D\right\}$ where $D=\left\{x^{2}+y^{2} \leq 1\right\}$ and normal $\mathbf{n}= \pm(\nabla z,-1)= \pm\left(\frac{x}{\sqrt{2-x^{2}-y^{2}}}, \frac{y}{\sqrt{2-x^{2}-y^{2}}}, 1\right)$
and $\|\mathbf{n}\|=\sqrt{\frac{2}{2-x^{2}-y^{2}}}$, finally the surface area
$A=\iint_{S} d S=\iint_{D}\|\mathbf{n}\| d x d y=\sqrt{2} \iint_{D} \frac{d x d y}{\sqrt{2-x^{2}-y^{2}}}=$ (polar)
$=2 \pi \sqrt{2} \int_{0}^{1} \frac{r d r}{\sqrt{2-r^{2}}}=2 \sqrt{2} \pi\left[-\sqrt{2-r^{2}}\right]_{0}^{1}=2 \pi[2-\sqrt{2}]$.
For 2)
the field on the lateral part of S_{l} is $\mathbf{F}=(1,1,16 z)$
but since this part is vertical $\quad x^{2}+y^{2}=4, z \in[0,3]$
we cannot describe it as $z=f(x, y)$ so parametrize $\mathbf{r}(u, v)$:
$x=2 \cos u \quad y=2 \sin u \quad z=v \quad u \in[0,2 \pi], v \in[0,3]$
$\frac{\partial \mathbf{r}}{\partial u}=(-2 \sin u, 2 \cos u, 0) \quad \frac{\partial \mathbf{r}}{\partial v}=(0,0,1)$ and the normal vector
$\mathbf{n}= \pm\left(\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right)=(2 \cos u, 2 \sin u, 0)(\|\mathbf{n}\|=2)$
for outward take +
$\mathbf{F} \cdot \mathbf{n}=2(\cos u+\sin u)$
$\iint_{S_{l}} \mathbf{F} \cdot \mathbf{d S}=\mathbf{2} \int_{0}^{2 \pi} \int_{0}^{3}(\cos u+\sin u) d v d u=0$ because of the periodicity.
The top could be described as $z=3$
$(x, y) \in D=\left\{x^{2}+y^{2} \leq 4\right\} \mathbf{n}=(0,0,1)$ upward
the field on the top is $\mathbf{F}=\left(1,1,3\left(x^{2}+y^{2}\right)^{2}\right)$ and $\mathbf{F} \cdot \mathbf{n}=3\left(x^{2}+y^{2}\right)^{2}$
the flux comming out from the top is
$\iint_{\text {top }} \mathbf{F} \cdot \mathbf{d S}=\iint_{D} 3\left(x^{2}+y^{2}\right)^{2} d x d y=($ polar $)=6 \pi \int_{0}^{2} r^{5} d r=3 \cdot 2^{6} \pi$.
The bottom could be described as $z=0$
$(x, y) \in D=\left\{x^{2}+y^{2} \leq 4\right\} \mathbf{n}=(0,0,-1)$ downward
the field on the bottom is $\mathbf{F}=(1,1,0)$ and $\mathbf{F} \cdot \mathbf{n}=0$.
Therefore the only contribution to the flux is out from the top and
$\iint_{S} \mathbf{F} \cdot \mathbf{d S}=192 \pi$.

For 3 a)

the surface S is vertical so parametrize:
$x=2 \cos u, y=2 \sin u, u \in\left[0, \frac{\pi}{2}\right]$, and $0 \leq z \leq 5-2 x-y$ (below the plane) necessary condition $2 x+y \leq 5$ is satisfied inside the circle
$\mathbf{r}(u, v)=(2 \cos u, 2 \sin u, v)$ and $D=\left\{u \in\left[0, \frac{\pi}{2}\right], 0 \leq v \leq 5-4 \cos u-2 \sin u\right\}$
$\frac{\partial \mathbf{r}}{\partial u}=(-2 \sin u, 2 \cos u, 0), \frac{\partial \mathbf{r}}{\partial v}=(0,0,1)$ so $\mathbf{n}=\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}=(2 \cos u, 2 \sin u, 0)$
thus $\|\mathbf{n}\|=2$ and $S A=\iint_{S} d S=\iint_{D}\|\mathbf{n}\| d u d v=2 \int_{0}^{\frac{\pi}{2}}\left(\int_{0}^{5-4 \cos u-2 \sin u} d v\right) d u=$
$=2 \int_{0}^{\frac{\pi}{2}}(5-4 \cos u-2 \sin u) d u=5 \pi+[-8 \sin u+4 \cos u]_{0}^{\frac{\pi}{2}}=5 \pi-8-4=5 \pi-12$.
For 3 b)
this time S is given as $\quad z=5-2 x-y,(x, y) \in D=\left\{x^{2}+y^{2} \leq 4\right\}$
then $\mathbf{n}=(-2,-1,-1)$ and $\|\mathbf{n}\|=\sqrt{6}$
$S A=\iint_{S} d S=\iint_{D}\|\mathbf{n}\| d x d y=\sqrt{6}$ area of $D=4 \sqrt{6} \pi$.

For 4)

$S: z=\sqrt{4-y^{2}},(x, y) \in D=\left\{x^{2}+y^{2} \leq 4\right\}$ since $z>0$
normal vector $\mathbf{n}=(-\nabla z, 1)=\left(0, \frac{y}{\sqrt{4-y^{2}}}, 1\right)$
since upward means positive z-coordinate
$\mathbf{F}=\left(x^{2} y z, y, x z\right)$ on $S \quad \mathbf{F}=\left(\ldots, y, x \sqrt{4-y^{2}}\right)$ and
$\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{D} \mathbf{F} \cdot \mathbf{n} d x d y=\iint_{D}\left[\frac{y^{2}}{\sqrt{4-y^{2}}}+x \sqrt{4-y^{2}}\right] d x d y=$
$=\int_{-2}^{2}\left(\frac{y^{2}}{\sqrt{4-y^{2}}} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} d x\right) d y+\int_{-2}^{2} \sqrt{4-y^{2}}\left(\int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} x d x\right) d y=$
$=2 \int_{0}^{2} \frac{y^{2}}{\sqrt{4-y^{2}}} \cdot 2 \sqrt{4-y^{2}} d y+0(x$ is an odd f$)=4 \int_{0}^{2} y^{2} d y=\frac{4}{3} \cdot 8=\frac{32}{3}$.

For 5)

$S: z=\frac{x^{2}}{2},(x, y) \in D=\left\{x^{2}+y^{2} \leq 1, x>0, y<0\right\}$
normal vector $\mathbf{n}=(\nabla z,-1)=(x, 0,-1)$ and $\|\mathbf{n}\|=\sqrt{x^{2}+1}$
and
$\int_{S} \int z x d S=\int_{D} \int \frac{x^{2}}{2} \cdot x \sqrt{x^{2}+1} d x d y=\frac{1}{2} \int_{0}^{1} x^{3} \sqrt{x^{2}+1}\left(\int_{-\sqrt{1-x^{2}}}^{0} d y\right) d x=$
$=\frac{1}{2} \int_{0}^{1} x^{3} \sqrt{x^{2}+1} \sqrt{1-x^{2}} d x=\frac{1}{2} \int_{0}^{1} x^{3} \sqrt{1-x^{4}} d x=$
$\left(u=1-x^{4}, d u=-4 x^{3} d x\right) \quad=\frac{1}{8} \int_{0}^{1} \sqrt{u} d u=\frac{1}{8}\left[\frac{2}{3} x^{\frac{3}{2}}\right]_{0}^{1}=\frac{1}{12}$.

For 6)

Evaluate where $S: \quad z=2-x-y$ for $(x, y) \in D=\left\{x^{2}+2 y^{2} \leq 1\right\}$
since for $z=0$ the line $x+y=2$ is outside the ellipse
so $\mathbf{n}=(\nabla z,-1)=(-1,-1,-1)$ and $\|\mathbf{n}\|=\sqrt{3}$
and $\quad \iint_{S} x^{2} d S=\iint_{D} x^{2} \sqrt{3} d x d y$ (modified polar . or cartesian coord.)
$x=r \cos \theta \quad y=\frac{1}{\sqrt{2}} r \sin \theta \quad d x d y=\frac{1}{\sqrt{2}} r d r d \theta \quad x^{2}+2 y^{2}=r^{2}$
then $D^{*}=\{0 \leq r \leq 1,0 \leq \theta \leq 2 \pi\}$ and the integral
$=\sqrt{\frac{3}{2}} \int_{0}^{2 \pi} \int_{0}^{1} r^{2} \cos ^{2} \theta r d \theta d r=\sqrt{\frac{3}{2}}\left[\frac{r^{4}}{4}\right]_{0}^{1} \int_{0}^{2 \pi} \frac{1+\cos 2 \theta}{2} d \theta=\frac{\sqrt{3} \pi}{4 \sqrt{2}}$
OR $\quad x \in[-1,1]$ and $y \in\left[-\frac{1}{\sqrt{2}} \sqrt{1-x^{2}}, \frac{1}{\sqrt{2}} \sqrt{1-x^{2}}\right]$.

