THE UNIVERSITY OF CALGARY
 DEPARTMENT OF MATHEMATICS AND STATISTICS
 FINAL EXAMINATION
 MATH 353 (L60)

Summer 99

TIME: 3 hours

Each question - 10 marks.

1. Write the integral $I=\iint_{D} \sqrt{x^{2}+y^{2}} d x d y$,
where D is the region above the line $y=-x$, below the x-axis and inside the circle with the radius 2 and the center at $(2,0)$
(a) as iterated integrals in Cartesian coordinates;
(b) write the integral I in polar coordinates;
(c) evaluate I.

Solution

Sketch the region $y \geq-x, y \leq 0$ and $(x-2)^{2}+y^{2} \leq 4$
find the intersection of the line and the circle
$(x-2)^{2}+x^{2}=4 \quad 2 x(x-2)=0 \quad$ at $(2,-2)$ and $(0,0)$
we can see that for a) it is easier to slice it
horizontally
$D=\left\{-2 \leq y \leq 0,-y \leq x \leq 2+\sqrt{4-y^{2}}\right\}$
and $I=\int_{-2}^{0}\left(\int_{-y}^{2+\sqrt{4-y^{2}}} \sqrt{x^{2}+y^{2}} d x\right) d y$
For b)
$-x \leq y \leq 0 \rightarrow \rightarrow \rightarrow-\frac{\pi}{4} \leq \theta \leq 0$
$(x-2)^{2}+y^{2} \leq 4 \rightarrow \rightarrow x^{2}+y^{2} \leq 4 x \rightarrow \rightarrow \rightarrow r^{2} \leq 4 r \cos \theta$
$D^{*}=\left\{-\frac{\pi}{4} \leq \theta \leq 0,0 \leq r \leq 4 \cos \theta\right\}$ and
$I=\int_{-\frac{\pi}{4}}^{0}\left(\int_{0}^{4 \cos \theta} r^{2} d r\right) d \theta=($ and for c$\left.)\right)=\int_{-\frac{\pi}{4}}^{0} \frac{4^{3}}{3} \cos ^{3} \theta d \theta=$
$=\frac{64}{3} \int_{-\frac{\pi}{4}}^{0}\left(1-\sin ^{2} \theta\right) \cos \theta d \theta=\frac{64}{3} \int_{-\frac{1}{\sqrt{2}}}^{0}\left(1-u^{2}\right) d u=\frac{64}{3}\left[u-\frac{u^{3}}{3}\right]_{-\frac{1}{\sqrt{2}}}^{0}=$
$=\frac{64}{3}\left[\frac{1}{\sqrt{2}}-\frac{1}{6 \sqrt{2}}\right]=\frac{64}{3 \cdot 6 \sqrt{2}}[6-1]=\frac{32 \cdot 5}{9 \sqrt{2}}=\frac{16 \cdot 5 \sqrt{2}}{9}=\frac{80 \sqrt{2}}{9}$.
2. Write the integral $\iiint_{B} \sqrt{x^{2}+y^{2}} d x d y d z$ where B is the ball $\left\{x^{2}+y^{2}+z^{2} \leq 4\right\}$
(a) as iterated integrals in cylindrical coordinates ;
(b) as iterated integrals in spherical coordinates;
(c) evaluate I.

Solution

For a)
$\iiint_{B} \sqrt{x^{2}+y^{2}} d x d y d z=\iiint_{B^{*}} r^{2} d r d \theta d z=\int_{0}^{2 \pi} d \theta \cdot \int_{0}^{2} r^{2}\left(\int_{-\sqrt{4-r^{2}}}^{\sqrt{4-r^{2}}} d z\right) d r$
where $B^{*}=\left\{0 \leq \theta \leq 2 \pi, 0 \leq r^{2}+z^{2} \leq 4\right\}$
For b)
$\iiint_{B} \sqrt{x^{2}+y^{2}} d x d y d z=\iiint_{B^{* *}} \rho^{3} \sin ^{2} \phi d \rho d \phi d \theta$ since $x^{2}+y^{2}=\rho^{2} \sin ^{2} \phi$
where $B^{* *}=\{0 \leq \theta \leq 2 \pi, 0 \leq \rho \leq 2,0 \leq \phi \leq \pi\}$
and for c)
$\iiint_{B^{* *}} \rho^{3} \sin ^{2} \phi d \rho d \phi d \theta=2 \pi \int_{0}^{2} \rho^{3} d \rho \cdot \int_{0}^{\pi} \frac{1-\cos 2 \phi}{2} d \phi=8 \pi\left[\frac{\pi}{2}-0\right]=4 \pi^{2}$.
3. For $\mathbf{F}(x, y)=\left(2 y-x^{2} y, 2 x-y^{3}\right)$ and c given as the boundary of $D=\left\{-2 \leq x \leq 2, x^{2} \leq y \leq 4\right\}$ oriented counterclockwise evaluate $\int_{c} \mathbf{F} \cdot \mathbf{d s}$.

Solution

Since the curve is closed in the xy-plane,oriented counterclockwise we can use Green's theorem and
$\int_{c} \mathbf{F} \cdot \mathbf{d s}=\iint_{D}\left[\left(F_{2}\right)_{x}-\left(F_{1}\right)_{y}\right] d x d y=\iint_{D}\left[2-2+x^{2}\right] d x d y$
where $D=\left\{-2 \leq x \leq 2, x^{2} \leq y \leq 4\right\}$-the region inside the curve
so

$$
\begin{aligned}
& \int_{c} \mathbf{F} \cdot \mathbf{d s}=\int_{-2}^{2} x^{2}\left(\int_{x^{2}}^{4} d y\right) d x=2 \int_{0}^{2}\left(4 x^{2}-x^{4}\right) d x=\frac{8}{3} \cdot 2^{3}-\frac{2}{5} \cdot 2^{5}= \\
& =2^{6}\left(\frac{1}{3}-\frac{1}{5}\right)=\frac{2^{7}}{15}=\frac{128}{15}
\end{aligned}
$$

(a) Describe the curve c given by $\mathbf{r}(t)=\left(t^{2}, t, 3 t-1\right)$ in Cartesian coordinates $\mathrm{x}, \mathrm{y}, \mathrm{z}$;
(b) calculate the arclength of c between $A(0,0,-1)$ and $B(1,-1,-4)$.

Solution

for a)
$x=t^{2}, y=t, z=3 t-1$ gives $y=x^{2}$ and $z=3 y-1$
so the curve is the intersection of a vertical paraboloid sheet and a plane.
for b)
$\mathbf{r}(t)=\left(t^{2}, t, 3 t-1\right)$ and $\mathbf{r}^{\prime}(t)=(2 t, 1,3)$, then
$\left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{4 t^{2}+10}, t=0$ for $A, t=-1$ for B
and the length $l=\int_{-1}^{0} \sqrt{4 t^{2}+10} d t=(u=2 t)=\frac{1}{2} \int_{-2}^{0} \sqrt{u^{2}+10} d u=$
(Table) $=\frac{1}{2}\left[\frac{u}{2} \sqrt{u^{2}+10}+5 \ln \left(u+\sqrt{u^{2}+10}\right)\right]_{-2}^{0}=\frac{1}{2} \sqrt{14}+\frac{5}{2} \ln \frac{\sqrt{10}}{\sqrt{14-2}}$.
4. For a conservative field $\mathbf{F}(x, y, z)=\left(y+z, x+e^{y}, x+\cos z\right)$ find the potential f such that $f(0,0,0)=0$.

Solution

we know that $f_{x}=y+z$ so $f=x y+x z+c(y, z)$
also $f_{y}=x+0+\frac{\partial c}{\partial y}=x+e^{y}$ so $\quad f=x y+x z+e^{y}+c(z)$
finally $f_{z}=x+c^{\prime}(z)=x+\cos z$ thus $f(x, y, z)=x y+x z+e^{y}+\sin z+c$
now $f(0,0,0)=1+c$ therefore it must $c=-1$ and together
$f(x, y, z)=x y+x z+e^{y}+\sin z-1$.
5. Show that for any smooth (i.e. with continuous second order partials) vector field \mathbf{F} of 3 variables and any smooth real-valued function $h(x, y, z)$ $\operatorname{div}(h \mathbf{F})=\operatorname{grad} h \bullet \mathbf{F}+h(\operatorname{div} \mathbf{F})$ i.e. $\quad \nabla \bullet(h \mathbf{F})=\nabla h \bullet \mathbf{F}+h(\nabla \bullet \mathbf{F})$.

Solution

for $h \mathbf{F}(x, y, z)=\left(h F_{1}, h F_{2}, h F_{3}\right)$..all functions of x, y, z
L.H.S $=\operatorname{div}(h \mathbf{F})=\left(h F_{1}\right)_{x}+\left(h F_{2}\right)_{y}+\left(h F_{3}\right)_{z}=$
$=h_{x} F_{1}+h\left(F_{1}\right)_{x}+h_{y} F_{2}+h\left(F_{2}\right)_{y}+h_{z} F_{3}+h\left(F_{3}\right)_{z}=$
$=\left(h_{x}, h_{y}, h_{z}\right) \bullet\left(F_{1}, F_{2}, F_{3}\right)+h\left[\left(F_{1}\right)_{x}+\left(F_{2}\right)_{y}+\left(F_{3}\right)_{z}\right]=$ R.H.S.
6. Evaluate $\quad \oint_{c} \mathbf{F} \bullet d \mathbf{d s} \quad$ where $\mathbf{F}=\left(x, y+e^{y}, x z\right)$ and the curve c is the intersection of the plane $\quad 2 y+z=3$ and the paraboloid $\quad z=x^{2}+y^{2}$, oriented clockwise.

Solution

the curve is closed so we can use Stokes' theorem
we need curl $\mathbf{F}=\left\|\begin{array}{ccc}+ & - & + \\ \partial_{x} & \partial_{y} & \partial_{z} \\ x & y+e^{y} & x z\end{array}\right\|=(0,-z, 0)$
and we must define S (notice that we have 2 possibilities-plane or paraboloid)
S is a part of the plane $z=3-2 y \quad$ inside the paraboloid $z \geq x^{2}+y^{2}$
we have to specify $D: 3-2 y \geq x^{2}+y^{2} \quad 4 \geq x^{2}+(y+1)^{2}$
and $\mathbf{n}=(\nabla z,-1)=(0,-2,-1)$ since clockwise orientation

$$
\begin{aligned}
& \oint_{c} \mathbf{F} \cdot \mathbf{d s}=\iint_{S} \operatorname{curl} \mathbf{F} \bullet \mathbf{d} \mathbf{S}=\iint_{D} 2 z d x d y=(\text { subst for } z)= \\
& =\iint_{D} 2(3-2 y) d x d y=2 \iint_{D}[5-2(y+1)] d x d y=(Y=y+1) \\
& =10 \cdot \text { area of } D-4 \iint_{\left\{x^{2}+Y^{2} \leq 4\right\}} Y d x d Y=40 \pi-4 \cdot 0=40 \pi .
\end{aligned}
$$

7. Calculate the surface area of the lateral part of the paraboloid $z=x^{2}+y^{2}$ between the planes $z=1$ and $z=9$, in the first octant.

Solution

for the surface $S: z=x^{2}+y^{2}$ we need $\mathbf{n}=(\nabla z,-1)=(2 x, 2 y,-1)$ and D
we know that $1 \leq z \leq 9$ so $D=\left\{1 \leq x^{2}+y^{2} \leq 9, x>0, y>0\right\}$
and $S A=\iint_{S} d S=\iint_{D}\|\mathbf{n}\| d x d y=\iint_{D} \sqrt{4 x^{2}+4 y^{2}+1} d x d y=$
(polar coord $)=\int_{0}^{\frac{\pi}{2}} d \theta \cdot \int_{1}^{3} r \sqrt{4 r^{2}+1} d r=\frac{\pi}{2}\left[\frac{\left(4 r^{2}+1\right)^{\frac{3}{2}}}{3 \cdot 4}\right]_{1}^{3}=$
$=\frac{\pi}{24}[37 \sqrt{37}-5 \sqrt{5}]$.
8. Find the flux $\iint_{S} \mathbf{F} \cdot \mathbf{d S}$ of $\mathbf{F}(x, y, z)=(x z, y z, 3 z)$ outward where the surface $S=\left\{x^{2}+y^{2}+z^{2}=4, z \leq 0\right\}$.

Solution

to describe $S \quad z=-\sqrt{4-x^{2}-y^{2}},(x, y) \in\left\{x^{2}+y^{2} \leq 4\right\}$
$\mathbf{n}=(\nabla z,-1)=\left(\frac{x}{\sqrt{4-x^{2}-y^{2}}}, \frac{y}{\sqrt{4-x^{2}-y^{2}}},-1\right)$ since outward means downward and on $S \quad \mathbf{F}=\left(-x \sqrt{4-x^{2}-y^{2}},-y \sqrt{4-x^{2}-y^{2}},-3 \sqrt{4-x^{2}-y^{2}}\right)$
$\mathbf{F} \bullet \mathbf{n}=-x^{2}-y^{2}+3 \sqrt{4-x^{2}-y^{2}}$
finally

$$
\begin{aligned}
& \iint_{S} \mathbf{F} \bullet \mathbf{d S}=\iint_{D}\left(-x^{2}-y^{2}+3 \sqrt{4-x^{2}-y^{2}}\right) d x d y=(\text { polar coord. }) \\
& =2 \pi \int_{0}^{2}\left(-r^{2}+3 \sqrt{4-r^{2}}\right) r d r=2 \pi\left[-\frac{r^{4}}{4}-\left(4-r^{2}\right)^{\frac{3}{2}}\right]_{0}^{2}=-8 \pi+16 \pi=8 \pi
\end{aligned}
$$

9. Calculate the total flux of $\mathbf{F}(x, y, z)=(y z, \sqrt{y}, 3 x)$ coming out
from the closed cylinder (incl.top and bottom) $\left\{x^{2}+z^{2}=9,0 \leq y \leq 4\right\}$.

Solution

Since the surface is closed we can use the divergence (Gauss') theorem and
flux $=\iint_{S} \mathbf{F} \bullet \mathbf{d} \mathbf{S}=\iiint_{B} d i v \mathbf{F} d x d y d z$ where B is the inside the cylinder
$B=\left\{x^{2}+z^{2} \leq 9,0 \leq y \leq 4.\right\}$ and $\operatorname{div} \mathbf{F}=0+\frac{1}{2 \sqrt{y}}+0$
therefore
flux $=\iint_{\left\{x^{2}+z^{2} \leq 9\right\}} d x d z \cdot \int_{0}^{4} \frac{1}{2 \sqrt{y}} d y=9 \pi \cdot[\sqrt{y}]_{0}^{4}=18 \pi$.

