THE UNIVERSITY OF CALGARY DEPARTMENT OF MATHEMATICS \& STATISTICS
 MATHEMATICS 353-02
 QUIZ \#1T

WINTER 2006
NAME: \qquad I.D. No.: \qquad

1. Find $\quad \partial S$ - boundary of S. Is S closed? Open? Bounded? Sketch the set.
(a) $\left.S=(x, y) \left\lvert\, \frac{x}{|y|} \leq 1\right.\right\}$
(b) $S=\left\{(x, y, z) \mid 2 x^{2}+3 y^{2}+z^{2} \leq 1, z \geq 0\right\}$
2. Find all local extrema of $\quad f(x, y)=y e^{x^{2}-2 y^{2}}$ in its domain.Explain.

SOLUTION

for 1a)

it must $\quad y \neq 0$ so the x-axis is out
snce $|y|>0$ we can multiply and $x \leq|y|$
so all points above or on $y=x, y>0$ are in
and for $y<0 \quad x \leq-y,-x \geq y$ below nad on the line
the set UNBDD
and the boundary is $\partial D=\{y= \pm x, x>0\} \cup\{y=0, x \leq 0\}$
first part is included ,the second excluded so neither open nor closed..

for b)

$2 x^{2}+3 y^{2}+z^{2}=1$ is an ellipsoid, $z \geq 0$,means top half the set is all points inside or on and above tr on the xy-plane
therefore the set BDD , and the boundary consists of two parts
bottom and shell
$\partial S=\left\{2 x^{2}+3 y^{2} \leq 1, z=0\right\} \cup\left\{2 x^{2}+3 y^{2}+z^{2}=1, z \geq 0\right\}$
both are included so the set is closed.

For 2)

f is defined, continous, differentiable everywhere,for critical points solve
$f_{x}=2 x y e^{x^{2}-2 y^{2}}=0 \quad$ so $x=0$ or $y=0$
$f_{y}=e^{x^{2}-2 y^{2}}\left(1-4 y^{2}\right)=0 \quad$ so $y= \pm \frac{1}{2}$
we got 2 critical points $\quad\left(0, \frac{1}{2}\right),\left(0,-\frac{1}{2}\right)$
for Second Derivative Test
$f_{x x}=2 y e^{x^{2}-2 y^{2}}\left(1+2 x^{2}\right) \quad f_{x y}=2 x e^{x^{2}-2 y^{2}}\left(1-4 y^{2}\right) \quad f_{y y}=e^{x^{2}-2 y^{2}}\left(-12 y+16 y^{3}\right)$
Now

points	A	B	C	D	
$\left(0, \frac{1}{2}\right)$	$e^{-\frac{1}{2}}$	0	$-4 e^{-\frac{1}{2}}$	pos	saddle
$\left(0,-\frac{1}{2}\right)$	$-e^{-\frac{1}{2}}$	0	$4 e^{-\frac{1}{2}}$	pos	saddle
					where $D=B^{2}-A C$

Quis \#1
To4 The 10 am
(a)

T05 The 3pm

Tolf02 The 2pm

