THE UNIVERSITY OF CALGARY DEPARTMENT OF MATHEMATICS & STATISTICS MATHEMATICS 353-02 QUIZ #1T

WINTER 2006	
NAME:	I.D. No.:

1. Find ∂S - boundary of S. Is S closed? Open? Bounded? Sketch the set.

(a)
$$S = (x, y) \mid \frac{x}{|y|} \le 1$$
}
(b) $S = \{(x, y, z) \mid 2x^2 + 3y^2 + z^2 \le 1, z \ge 0\}$
[5]

2. Find all local extrema of $f(x, y) = ye^{x^2 - 2y^2}$ in its domain. Explain. [5]

SOLUTION

for 1a)

it must $y \neq 0$ so the x -axis is out

snce |y| > 0 we can multiply and $x \le |y|$

so all points above or on y = x, y > 0 are in

and for y < 0 $x \le -y, -x \ge y$ below nad on the line

the set UNBDD

and the boundary is $\partial D = \{y = \pm x, x > 0\} \cup \{y = 0, x \le 0\}$

first part is included ,the second excluded so neither open nor closed..

for b)

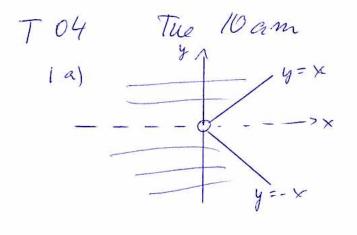
 $2x^2 + 3y^2 + z^2 = 1$ is an ellipsoid, $z \ge 0$, means top half the set is all points inside or on and above tr on the xy-plane therefore the set BDD, and the boundary consists of two parts bottom and shell

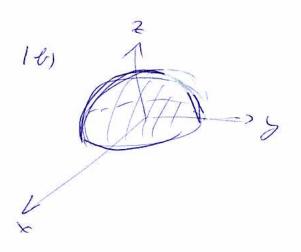
 $\partial S = \{2x^2 + 3y^2 \le 1, z = 0\} \cup \{2x^2 + 3y^2 + z^2 = 1, z \ge 0\}$ both are included so the set is **closed.**

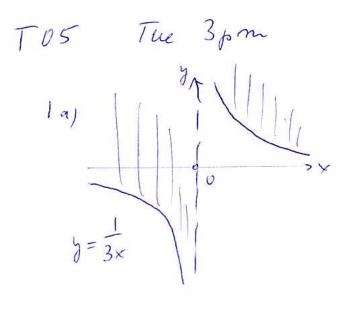
For 2)

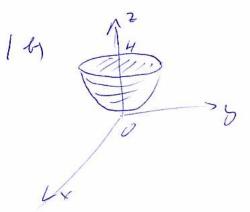
f is defined, continous, differentiable everywhere, for critical points solve $f_x = 2xye^{x^2-2y^2} = 0$ so x = 0 or y = 0 $f_y = e^{x^2-2y^2} (1-4y^2) = 0$ so $y = \pm \frac{1}{2}$ we got 2 critical points $\left(0, \frac{1}{2}\right), \left(0, -\frac{1}{2}\right)$ for Second Derivative Test

 $f_{xx} = 2ye^{x^2 - 2y^2} (1 + 2x^2) \qquad f_{xy} = 2xe^{x^2 - 2y^2} (1 - 4y^2) \qquad f_{yy} = e^{x^2 - 2y^2} (-12y + 16y^3)$ Now $\boxed{\text{points}} \begin{array}{ccc} A & B & C & D \\ \hline (0, \frac{1}{2}) & e^{-\frac{1}{2}} & 0 & -4e^{-\frac{1}{2}} \\ (0, -\frac{1}{2}) & -e^{-\frac{1}{2}} & 0 & 4e^{-\frac{1}{2}} \end{array} \begin{array}{c} \text{pos saddle} \\ \text{where } D = B^2 - AC \end{array}$ Quij #1









The 2pm T01+02

