The University of Calgary
MATH 353-01
Name: \qquad I.D. \#: \qquad

1. Sketch the given set S.Find the boundary ∂S.Is the set S closed,open,bounded?
(a) $S=\left\{(x, y) ; \frac{3}{x} \leq y\right\}$.
(b) $S=\left\{(x, y, z) ; \sqrt{x^{2}+y^{2}} \leq z \leq 4\right\}$.
2. Find all local extrema of $f(x, y)=e^{x}\left(y^{2}+2 x y\right)$ in the domain.

Solutions For 1a)

$\frac{3}{x}$ is defined only $x \neq 0$ so y-axis is out ,
all point on or above the hyperbola $y=\frac{3}{x}$ except the y-axis
therefore the set is UNBDD
we can see that the boundary $\partial S=\{x=0\} \cup\left\{y=\frac{3}{x}\right\}$
the axis are out ,the hyperbola is in so the set S is neither open nor closed..

For 1b)

we can see that $z=4$ is a horizon.plane , $z=\sqrt{x^{2}+y^{2}}$ is a cone (half)
and the set is inside and on the cone (above the xy-plane) and below or on the plane $z=4$
$\partial S=\left\{(x, y, z) ; \sqrt{x^{2}+y^{2}}=z, 0 \leq z \leq 4\right\} \cup\left\{(x, y, z) ; x^{2}+y^{2} \leq 2, z=4\right\}$ "cone" + "lid"
Thus $\partial S \subset S$, the whole boundary is inside the set ,so S is closed and bounded.
For 2) the function f is defined and differentiable everywhere
for critical points solve
$f_{x}=e^{x}\left(y^{2}+2 x y+2 y\right)=y e^{x}(y+2 x+2)=0$
$f_{y}=e^{x}(2 y+2 x)=0$ thus $y=-x$
if $y=-x$ from the first equ. $\quad-x e^{x}(x+2)=0$ so $x=0$ or $x=-2$
2 critical points $\quad(0,0),(-2,2)$
$f_{x x}=y e^{x}(y+2 x+4) \quad f_{x y}=e^{x}(2 y+2 x+2) \quad f_{y y}=2 e^{x}$

points	A	B	C	D
$(0,0)$	0	2	2	4
$(2,-2)$	$4 e^{2}$	$2 e^{2}$	$2 e^{2}$	$-4 e^{4}$

$(0,0)$ is a saddle point since the discriminant $D=B^{2}-A C>0$
$(2,-2)$ is a loc.min since $A>0, D<0$

Quis \#1
To4 The 10 am
(a)

T05 The 3pm

Tolf02 The 2pm

