## The University of Calgary MATH 353-02

## Department of Mathematics and Statistics Quiz #1T Winter 2006

Name:\_\_\_\_\_\_I.D.#:\_\_\_\_\_

1. Sketch the given set S. Find the boundary  $\partial S$ . Is the set S closed, open, bounded?

(a) 
$$S = \left\{ (x, y); \frac{1}{x} \le 3y \right\}.$$
  
(b)  $S = \left\{ (x, y, z); x^2 + y^2 \le z \le 4 \right\}.$  [5]

2. Find all local extrema of  $f(x,y) = e^y (x^2 - 2xy)$  in the domain. [5]

## Solutions For 1a)

 $\frac{1}{x}$  is defined only  $x \neq 0$  so y-axis is out,

all point on or above the hyperbola  $y = \frac{1}{3x}$  except the y-axis

therefore the set is UNBDD

we can see that the boundary  $\partial S = \{x = 0\} \cup \{y = \frac{1}{3x}\}$ 

the axis are out , the hyperbola is in so the set S is **neither open nor closed.** 

## For 1b)

we can see that z = 4 is a horizon.plane  $z = x^2 + y^2$  is a paraboloid

and the set is inside and on the paraboloid above the xy-plane and below and on the plane z=4

$$\partial S = \{(x, y, z); x^2 + y^2 = z, 0 \le z \le 4\} \cup \{(x, y, z); x^2 + y^2 \le 4, z = 4\} \text{"cup"} + \text{"lid"}$$

Thus  $\partial S \subset S$ , the whole boundary is inside the set ,so S is **closed and bounded.** 

For 2) the function f is defined and differentiable everywhere

for critical points solve

$$f_x = e^y (2x - 2y) = 0....x = y$$

$$f_y = e^y (x^2 - 2xy - 2x) = xe^y (x - 2y - 2) = 0$$

if x = y from the second equ.  $xe^y(-x-2) = 0$  so x = 0 or x = -2

2 critical points (0,0), (-2,-2)

$$f_{xx} = 2e^y$$
  $f_{xy} = e^y (2x - 2y - 2)$   $f_{yy} = xe^y (x - 2y - 4)$   
points  $A B C D$ 

| points   | A         | B          | C         | D          |
|----------|-----------|------------|-----------|------------|
| (0,0)    | 2         | -2         | 0         | 4          |
| (-2, -2) | $2e^{-2}$ | $-2e^{-2}$ | $4e^{-2}$ | $-4e^{-4}$ |

(0,0) is a **saddle points** since the discriminant  $D=B^2-AC>0$ 

$$(-2,-2)$$
 is a **loc. min** since  $A > 0, D < 0$ 

Quij #1









