The University of Calgary Department of Mathematics and Statistics MATH 353-01 Quiz #2R

Winter, 2006

Name: I.D.#:

- 1. Find max/min values of $f(x, y) = x^4 + y^4$ on $2x^2 + y^2 = 20$. [3]
- 2. Find max/min values of $f(x,y) = x^4 + y^4$ on the triangle with vertices (0,0), (1,0) and (0,1). |3|
- 3. Evaluate $\iint_D x^3 \cos(xy) dA$ where D is the region in the first quadrant below the parabola $y = x^2$ and the line x = 1. [4]

SOLUTION

For 1)

Since f is continuous and the ellipse is closed and bounded we have at least one max and one min

to find the points solve

$$\nabla f = \lambda \nabla g$$
 with $g(x,y) = 2x^2 + y^2 = 20$

$$4x^3 = \lambda 4x$$

$$4y^3 = \lambda 2y$$
 if $xy \neq 0$ then $\lambda = x^2 = 2y^2$ back to the ellipse

$$4y^2 + y^2 = 5y^2 = 20 \rightarrow y^2 = 4$$
 $y = \pm 2, x = \pm 2\sqrt{2}$

all combination
$$(\pm 2 \pm 2\sqrt{2})$$
, $(\pm 2 \mp 2\sqrt{2})$

all have the same value as $f(2, 2\sqrt{2}) = 16 + 64 = 80$

we have to consider xy = 0 x = 0 or y = 0

$$(0, \pm 2\sqrt{5})$$
 $f = 400$ $(\pm \sqrt{10}, 0)$ $f = 100$

maximum value is 400, minimum velue is 80.

For 2)

C.P inside
$$\nabla f = \mathbf{0}$$
 $x = y = 0$

C.P.on the boundary- 3 parts

$$B_1 = \{y = 0, x \in [0, 1]\}$$
 $f|_{B_1} = x^4$ only ends $B_2 = \{x = 0, y \in [0, 1]\}$ $f|_{B_2} = y^4$ only ends

$$B_2 = \{x = 0, y \in [0, 1]\}$$
 $f|_{B_2} = y^4$ only ends

$$B_3 = \{x + y = 1, x \in [0, 1]\}$$
 $f|_{B_3} = x^4 + (1 - x)^4 = h(x)$

$$h'(x) = 4x^3 - 4(1-x)^3 = 0$$
 if $x^3 = (1-x)^3$ $x = 1-x$ $x = y = \frac{1}{2}$

all C.P.
$$(0,0)$$
, $(1,0)$, $(0,1)$, $(\frac{1}{2},\frac{1}{2})$ now velues of f

$$f(0,0) = 0$$
 minimum

$$f(1,0) = f(0,1) = 1$$
 maximum, $f(\frac{1}{2}, \frac{1}{2}) = \frac{1}{2^4} + \frac{1}{2^4} = \frac{1}{8}$

For 3)

$$D = \{0 \le x \le 1, 0 \le y \le x^2\}$$

 $= \frac{1}{3} \left[-\cos u \right]_0^1 = \frac{1 - \cos 1}{3}.$

$$\iint_{D} x^{3} \cos(xy) dA = \int_{0}^{1} x^{3} \left(\int_{0}^{x^{2}} \cos(xy) dy \right) dx = \int_{0}^{1} x^{3} \left[\frac{\sin(xy)}{x} \right]_{y=0}^{y=x^{2}} dx =$$

$$= \int_{0}^{1} (x^{2} \sin(x^{3})) dx = (\text{by subst.} u = x^{3}, du = 3x^{2} dx) = \frac{1}{3} \int_{0}^{1} (\sin(u)) du$$