I.D.#:

- 1. Find abs.maximum and minimum values of $f(x,y) = x^3 + y^3$ $S = \{(x, y); x^2 + 2y^2 < 9\}.$ on the set [5]
- 2. For $\iint_{D} \sqrt{2-y^2} \, dA$ where D is the region in the first quadrant below the line y=xand inside the circle $x^2 + y^2 = 2$
 - (a) sketch the region D;
 - (b) set up BOTH iterated integrals and evaluate one of them. [5]

Solution

For 1)

first , for critical points inside : solve $\nabla f = \overrightarrow{0}$ $f_x = 3x^2 = 0 \qquad f_y = 3y^2 = 0$

so (0,0) is critical point

critical points on the boundary $\partial S = \{g(x,y) = x^2 + 2y^2 = 9\}$. solve $\nabla f = \lambda \nabla g$ $3x^2 = \lambda 2x$ $3y^2 = \lambda 4y$ from the first equation x = 0 or $\lambda = \frac{3x}{2}$

from the second equation y = 0 or $\lambda = \frac{3}{4}y$

if x = 0 from the set $y = \pm \frac{3}{\sqrt{2}}$ so C.P.s $(0, \pm \frac{3}{\sqrt{2}})$ if y = 0 from the set $x = \pm 3$ so C.P.s $(\pm 3, 0)$

if $xy \neq 0$ $\lambda = \frac{3x}{2} = \frac{3y}{4}$ y = 2x then from the set

 $9x^2 = 9$ $x = \pm 1$ and $y = \pm 2$ 4 more C.P. now values of f: f(0,0) = 0 $f\left(0,\pm\frac{3}{\sqrt{2}}\right) = \pm\frac{27}{2\sqrt{2}}$ $f(\pm 1,\pm 2) = \pm 9$ $f(\pm 3,0) = \pm 27$max/min

For 2)

for the region we need the intersection of y = x and $x^2 + y^2 = 2$

with x > 0 and y > 0(1,1)

it is easier to slice it horizontally: line is the left end, circle the right one

$$0 \le y \le 1 \qquad y \le x \le \sqrt{2 - y^2}$$

$$\iint_{D} \sqrt{2 - y^2} \, dA = \int_{0}^{1} \left(\sqrt{2 - y^2} \int_{y}^{\sqrt{2 - y^2}} dx \right) dy = \int_{0}^{1} \left(\sqrt{2 - y^2} \left[\sqrt{2 - y^2} - y \right] \right) dy = \int_{0}^{1} \left[2 - y^2 - y \sqrt{2 - y^2} \right] dy = \left[2y - \frac{1}{3}y^3 \right]_{0}^{1} + \frac{1}{2} \int_{2}^{1} \sqrt{u} du = \frac{5}{3} - \frac{1}{3} \left[u^{\frac{3}{2}} \right]_{1}^{2} = \frac{1}{3} \left(6 - 2\sqrt{2} \right)$$
(subst. $u = 2 - y^2$, $du = -2y dxy$)

to slice it vertically we have to split since we have two tops:line + circle

for
$$0 \le x \le 1$$
 $0 \le y \le x$
for $1 \le x \le \sqrt{2}$ $0 \le y \le \sqrt{2 - x^2}$ thus
$$\iint_D \sqrt{2 - y^2} \, dA = \int_0^1 \left(\int_0^x \sqrt{2 - y^2} \, dy \right) dx + \int_1^{\sqrt{2}} \left(\int_0^{\sqrt{2 - x^2}} \sqrt{2 - y^2} \, dy \right) dx$$