Name:_____I.D.#:____

- 1. Find abs.maximum and minimum values of $f(x,y) = x^2y$ on the set $S = \{(x,y); x^2 + 2y^2 \le 6\}.$ [6]
- 2. For $\iint_D \frac{x}{\sqrt{y}} dA$ where D is the region in the first quadrant between $y = x^2$ and y = 4
 - (a) sketch the region D;
 - (b) set up BOTH iterated integrals and evaluate one of them.. [4]

Solution

For 1)

first ,for critical points inside : solve $\nabla f = \overrightarrow{0}$ $f_x = 2xy = 0$ $f_y = x^2 = 0$ (0, y) for any y critical points on the boundary $\partial S = \{g(x, y) = x^2 + 2y^2 = 6\}$. solve $\nabla f = \lambda \nabla g$ $2xy = \lambda 2x$ $x^2 = \lambda 4y$ if x = 0 then $y = \pm \sqrt{3}$; if $x \neq 0$ then $y = \lambda$ and $x^2 = 4y^2$ back to the ellipse $6y^2 = 6$ $y = \pm 1, x = \pm 2$ check the values of $f: f(0, y) = 0, f(0, \pm \sqrt{3}) = 0$ $f(\pm 2, 1) = 4$ maxima; $f(\pm 2, -1) = -4$ minima

For 2)

intersection: $y = 4 = x^2$ x = 2so $0 \le x \le 2$ $x^2 \le y \le 4$ or $0 \le y \le 4$ $0 \le x \le \sqrt{y}$ and $\iint \frac{x}{\sqrt{x}} dA = \int_{0}^{2} \left(x \int_{0}^{4} \frac{1}{\sqrt{x}} dy\right) dx = \int_{0}^{2} \left(x \left[2\sqrt{y}\right]^{y=4}\right) dx = 2 \int_{0}^{2} x \left[2\sqrt{y}\right]^{y=4}$

$$\iint_{D} \frac{x}{\sqrt{y}} dA = \int_{0}^{2} \left(x \int_{x^{2}}^{4} \frac{1}{\sqrt{y}} dy \right) dx = \int_{0}^{2} \left(x \left[2\sqrt{y} \right]_{y=x^{2}}^{y=4} \right) dx = 2 \int_{0}^{2} x \left[2 - x \right] dx = 2 \int_{0}^{2} (2x - x^{2}) dx = 2 \left[x^{2} - \frac{x^{3}}{3} \right]_{0}^{2} = 2 \left[4 - \frac{8}{3} \right] = \frac{8}{3}$$
OR

$$\int_{0}^{4} \left(\frac{1}{\sqrt{y}} \int_{0}^{\sqrt{y}} x dx \right) dy = \int_{0}^{4} \frac{1}{\sqrt{y}} \left[\frac{x^{2}}{2} \right]_{x=0}^{x=\sqrt{y}} dy = \frac{1}{2} \int_{0}^{4} \sqrt{y} dy = \frac{1}{3} \left[y^{\frac{3}{2}} \right]_{0}^{4} = \frac{8}{3}.$$